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Abstract of the Dissertation

A Measurement of Electrons From Heavy
Quarks in p+p Collisions at

√
s = 200 GeV

by

Harry William Joseph Themann

Doctor of Philosophy

in

Physics

Stony Brook University

2011

The Relativistic Heavy Ion Collider (RHIC) at BNL offers a unique
opportunity in that it is capable of colliding protons and nuclei,
including asymmetric collisions of different species. Open heavy
quarks, that is charm or bottom not forming bound cc̄ or bb̄ pairs
are important probes of the Quark Gluon Plasma at the Relativistic
Heavy Ion Collider at BNL. They are formed at the initial colli-
sion of the nuclei and thus any effect to their transverse momentum
spectra or azimuthal distribution can only come from their inter-
action with the matter created in the collision. One of the most
powerful techniques of measuring these effects is to divide AuAu
data by appropriately scaled pp data. This work focuses on pro-
viding the best possible pp reference both in scope and precision.

Transverse momentum (pT ) spectra of electrons from semileptonic
weak decays of heavy flavor mesons in the range of 0.3 < pT <
15.0GeV/c have been measured at mid-rapidity (|y| < 0.35) be-
yond the previous published range of pT < 9.0GeV/c. This is done
using a new technique exploiting the observed characteristics of en-
ergy deposition in the PHENIX electromagnetic calorimeters. We
present this technique as well as the final measurement compared
to FONLL theory predictions of open charm and bottom cross sec-
tion
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Chapter 1

Introduction

The Relativistic Heavy Ion Collider (RHIC) was built to produce and study
the so called quark gluon plasma (QGP). The QGP is a state of matter in which
the degrees of freedom are colored partons, quarks and gluons as opposed to
the color free hadrons that we actually see in our detectors. RHIC is able to
create the matter/energy density thought to be necessary to create the QGP.
We now believe that this creation is indeed happening, there are a series of
”white papers” from the four experiments at RHIC that present an overview
of this evidence [4–7].

Whether or not a QGP is formed does not preclude the study of the prop-
erties of the hot dense matter that is certainly created in a RHIC Au-Au
collision. The medium that is created is exceedingly small, on the order of
1000fm3 and its lifetime exceedingly short, ≈ 100fm/c. This means that the
medium can only be probed with particles created in the collision. The white
papers outline many observables that can be used to measure the properties
of the medium.

In this thesis we will focus on so called hard probes, a particle created
from a QCD hard scattering event which occurs at the very earliest stage of
a collision. A hard probe has well measured creation properties that can also
be well described by theory. Since it is only created in the initial collision,
any alteration of measured properties can only come from interacting with the
matter created in the collision of the nuclei.

The charm quark was discovered in 1974, the bottom quark three years later
in 1977, with masses, mc ≈ 1.2−1.5GeV,mb ≈ 4.19−4.67GeV . There are two
types of charm and bottom carrying mesons, so called ”open” where we have a
charm(bottom) quark paired with another quark and a so called ”closed” where

1



one has charm(bottom) anti charm(anti bottom) pairs. The energy needed to
create charm and bottom quarks is much larger than ΛQCD thus allowing the
use of perturbative Quantum Chromodynamics (pQCD), a theoretical model
of the strong color field interaction, to describe the production mechanisms
and rates of Open Charm and Bottom.

Figure 1.1: Some semi-leptonic decays of D and B mesons.

Open charm particles are produced by the fragmentation of cc̄ pairs, Fig 1.1.
The dominant mechanism is the leading order (LO) gluon fusion Fig 1.2a. Con-
sequently they should provide us information as to the gluon densities of the
incoming particles. With RHIC we now have the possibility of studying this
gluon density as a function of system size by measuring open charm.

Of particular interest are effects which modify the transverse momentum
spectra of heavy flavor hadrons and their decay products, including energy loss,
transverse momentum broadening in both cold nuclear matter and in passage
through a hadronizing QGP as well as collective effects such as transverse flow.
In addition, J/Ψ regeneration in a QGP from the initial open charm yield has
been suggested. Thus up-to-date benchmark calculations of both the total
charm yield and the transverse momentum spectra are imperative.

We will present a measurement of the electrons from the decay of D and B
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Figure 1.2: LO and most important NLO heavy quark production diagrams.
LO - a) ”gluon fusion” b) ”quark-antiquark annihilation” NLO - c) Pair cre-
ation with gluon emission in output channel d) ” flavor excitation” e) ”gluon
splitting” f) ”gluon splitting but of ” flavor excitation” character

mesons in pp collisions at 200GeV center of mass energy using the PHENIX
detector at RHIC, Fig 1.1. The current state of the art in theory predictions
are so called Leading Order (LO), Next to Leading Order (NLO) and First
Order Next Leading Logarithm (FONLL). These are ”lattice” type calculations
using various levels of the diagrams of Fig 1.2 which represent various orders
of the strong coupling constant αs. For a comprehensive overview of these
calculations please see Creutz[8], Vogt[9] and Sterman[10].
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Chapter 2

PHENIX Experiment

Figure 2.1: ”Beam’s eye” view of PHENIX showing the central arm detectors.

2.1 Introduction

The PHENIX experiment has been taking physics data at RHIC since
1999. It is a high rate high multiplicity spectrometer designed to make pre-
cision measurements of rare processes even in the environment of the dense
particle production in AuAu collisions. It is well described elsewhere [11],
Fig. 2.1 shows schematic representation of PHENIX from the point of view
of the beam axis. Fig. 2.2 is a side view. In this analysis we use a sub set
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of PHENIX, the BeamBeamCounter [BBC], the DriftCHamber [DCH], Pad-
Chamber1 [PC1], the RingImagingCHerenkov(counter) [RICH] and the Elec-
troMagneticCalorimeter [EMC]. We will go through each subsystem separately
explaining what it is and how it is used.

Figure 2.2: Side view of PHENIX showing the B field return iron and the
muon arms.

2.2 Detector Coordinates

The cartesian coordinates of any collider experiment have the z axis along
the beam line, the y axis straight up and the x axis horizontal. In PHENIX,
Fig. 2.3, positive x points West, and positive z points North. The Central
arms are at right angles to the beam axis and are designated the East and
West arms. The Muon Arms are arrayed parallel to the beam axis and are
designated North and South.

Most of the time we speak in terms of cylindrical coordinates, the z axis
and φ, the azimuthal angle, with φ = 0 in the West direction.

Another important coordinate is called pseudorapidity, it is a description
of the angle, θ, relative to z, the beam axis,

η = − ln

[
tan

θ

2

]
. (2.1)

It can be written in terms of the momentum,
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Figure 2.3: PHENIX coordinate system

y =
1

2

[
|p|+ pL

|p| − pL

]
, (2.2)

the L standing for longitudinal.

Pseudorapidity only requires knowledge of the polar angle. It is related to
the rapidity which requires knowledge of a particular particle,

y =
1

2

[
E + pL
E − pL

]
. (2.3)

For highly relativistic particles the mass can be ignored and then y = η.

As can be seen in Fig. 2.4, as θ → 0(π) or as pL increases the magnitude of
the pseudorapidity and rapidity increase respectively, we say that we are going
in a more forward direction. Units of pseudorapidity represent smaller and
smaller ∆θ, the unit is preferred because, loosely speaking, particle production
is constant as a function of rapidity.

The PHENIX central arms cover a pseudorapidity range −0.35 ≤ η ≤ 0.35,
we correct our measurements up to −0.5 ≤ η ≤ 0.5 or 1 unit of rapidity when
we quote results. Implicit in this is our assumption that dN/dη is constant in
the range −0.5 ≤ η ≤ 0.5
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Figure 2.4: Pseudorapidity illustration

2.3 BBC

The BBC consists of two arrays of hexagonal Cerenkov radiators each ar-
ranged as an annuli about the beam pipe. The face of each array is 1.44m
from the center in z of PHENIX and cover a pseudo rapidity of 3.1-4.0 and 2π
azimuth. In a proton proton collision the BBC has three purposes;

1. Provide a minimum bias trigger.

2. Determine the collision vertex in z.

3. Set time zero, t0. This aids in assembling events and provides the start
time for timing detectors e.g. the Drift Chamber.

A high energy particle detector is essentially a camera taking snapshots
of events. In the case of this analysis the event is the impact of protons in
counter rotating bunches in the RHIC rings. The proton bunches are steered
such that they intersect in the center of PHENIX, the interaction point or IP.
When the bunches propagate through each other one proton from each bunch
may collide, either ”head on”, a so called hard scatter or grazingly where only
the fringe of the color fields interact, a so called diffractive event.

We only want the camera to snap when there is actually an event happen-
ing. The assumption is that in any collision at least one secondary will go
forward and one backward. When the BBC sees these two in coincidence a
minimum bias trigger is issued and PHENIX makes a measurement and writes
out the information.

Each of the phototubes of the BBC has an intrinsic timing resolution of
σt = 50ps. RHIC supplies a reference clock signal, the time of impact into
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Figure 2.5: Schematic View of the BBC

each BBC module is measured relative to this clock and is used to calculate
the BBC t0. This is determined by taking the average time measured by each
PMT of a module and then taking the half sum of these averages,

tBBC0 =
(tBBCN + tBBCS )

2
. (2.4)

Then the vertex position will be the half difference,

ZBBC
vtx = (tBBCN − tBBCS )/2c. (2.5)

The majority of pp events will have only one particle in each BBC module
so the estimated vertex resolution from Eq. 2.4 as σz = σt/

√
2 ≈ 1.2cm For a

central AuAu event this becomes much better (σz ≤ 0.3cm) since many more
secondaries are hitting the BBC modules, when the times are averaged a much
more precise measurement is possible.

This position determination is used to restrict our triggering to a z range
about the center of PHENIX so that grazing interactions of the secondaries
with the magnet pole tip are minimized. The magnet pole tips can be seen in
the lower half of Fig 2.2, the collision occurs in the very center

Since the BBC trigger only requires one hit per side, it is efficient for a wide
variety of interaction processes, this is why it is referred to as a ”Minimum
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Figure 2.6: Photograph of one BBC barrel before the installation.

Bias” trigger.

2.4 Drift Chamber

The Drift Chamber is the first of the central arm detectors of PHENIX that
is used in this analysis, Fig 2.1, and is the main tracking device in PHENIX.
All of the central arm detectors occupy two 90◦ patches in azimuth and cover
a polar angle, θ, range corresponding to a pseudorapidity, |η| < 0.35, centered
about θ = 90◦. It is placed at a radius 202cm < r < 246cm with a module in
both central arms. This spatial region is well visualized in Fig. 2.7 which is a
drawing of the frame which is the backbone of the DCH.

The DCH performs the following tasks:

• Accurate determination of charged track transverse momentum pT .

• Measure, in concert together with PC1 and BBC, z at the DCH and,
consequently, the angle of a particle track w.r.t. beam axis, θ.

• Determine the tracks of charged particles though PHENIX.

The DCH is a multi wire detector and uses drift time to measure distance.
A particle traverses the chamber leaving a trail of ionization in its wake. The
ionization electrons drift towards anode wires with a known velocity so that
drift time equals distance. With known locations of the wires spatial points
along the particle trajectories can be plotted. The DCH is a jet type detector
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Figure 2.7: The titanium frame that supports all of the DCH components.

[12, 13] in that the drift direction of the signal electrons is transverse to the
wire direction and the wires are arranged in cells.

There are six layers of wires in a cell, in PHENIX parlance, a keystone
Fig. 2.8. The X1 and X2 wires are the main tracking wires, they project at
right angles to the keystone to the opposite keystone on the other side of the
DCH. The wires are electrically broken at the mid point, there is a circuit
board strip along the mid point to which the wires are attached. The wires
are instrumented with Front End Modules that contain all of the front end
electronics as well as digitizing and fiber optic circuitry.

The other four layers are so called ”stereo” wires and they are used to
determine the z coordinate. They are at angles to the left and right of the
keystone in the figure and are attached to the adjacent opposite keystones.
Since these wires cross the X1 and X2 wires simultaneous hits in particular
groupings of these layers shows the possibility of determining the z coordinate.
In practice this has not worked out with sufficient accuracy and the use of PC1
(section 2.5) for z determination is preferred.

Each plane of wires has particular specialized wires as whose functions are
as follows;

• Cathode Wires Create uniform drift field between anode and cathode.

• Field/Potential Wires Separate adjacent anode wires and help to control
gas gain.
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Figure 2.8: The layout of wire position within one keystone. The beam direc-
tion is into(out of) the page.
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• Back Wires Stop drift from one side of the anode wire.

• Gate Wires Localize the drift region width.

• Termination Wires Help to reduce boundary affects, make gas gain
uniform along the plane.

The most obvious advantage of this arrangement of wires is that the back
wires remove the left/right ambiguity. If one imagines that the sense wires are
numbered consecutively then only even(odd) numbered wires will fire depend-
ing on which side the track is on.

The other important design strength are the gate wires. These wires re-
strict the path length that is sampled by a sense wire. Referring to Fig. 2.9,
the blue field lines lead to the sense wires, signal electrons from points along
the path that are intersected by blue field lines will be collected. The length
of a field line is proportional to the time needed for a signal electron to travel
from the point of generation to the sense wire. If one focuses on the orange
field lines the point is more easily illustrated. The path lengths are signifi-
cantly longer at the outer edges of the region, the electrons traveling along
these lines will take longer to arrive than the electrons traveling along the
central lines.

Figure 2.9: The field lines that are seen by a signal electron.

This spread of path lengths represents a spread in time during which one
could not distinguish between separate tracks. By limiting the path length
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sampled, the blue field lines, we also limit the spread in time of a particular
signal thus allowing separation of adjacent tracks that are closer together than
if we sampled complete tracks.

Figure 2.10: A track superimposed on a keystone

In Fig. 2.10 we see a hypothetical track traversing a typical keystone. There
is no requirement that a track be constrained to one keystone, this is drawn
for convenience. The short horizontal lines are the paths of the ionization
electrons from the track to the anode wires. Recall that the anode plane
”knows” which side the track is on because of the guard wires. The result is
an unambiguous set of points.

There are, of course, mitigating factors to this. The simplest factor are
dead anode wires, either broken or with dead electronics, even if a particular
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Figure 2.11: Simple Hough transform example[1]

wire is unbroken it could be shorted by a neighboring broken wire. Another
issue could be a coincident track very close and at a similar angle, not usually
an issue in pp collisions where the average number of secondaries is ≈ 30.

Another source of ambiguity is if a track passes within the guard wires, the
left right ambiguity returns.

The hits in the X1 and X2 planes are combined into tracks using a pattern
recognition algorithm called a Hough transform. The bend plane of the mag-
netic field is the xy plane in PHENIX coordinates. The DCH is outside of the
magnetic field so all potential tacks are straight lines in the xy plane and can
be thought of as having a slope, m, and and a y-intercept, b. If one were to
imagine several lines drawn through each point it can be easily seem that a
slope and intercept can be calculated for each line. If one were to create a two
dimensional histogram of these parameters there would be clustering near to
the slope and y-intercept represent a line through the points.

Since m and b are not bounded one usually transforms into a more appro-
priate space as in the following example from Wikipedia[1].

Consider three data points, shown here as black dots in Fig. 2.11

• For each data point, a number of lines are plotted going through it, all
at different angles. These are shown here as solid lines.

• For each solid line a line is plotted which is perpendicular to it and which
intersects the origin. These are shown as dashed lines.
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Figure 2.12: Hough space plot example[1]

• The length (ie perpendicular distance to the origin) and angle of each
dashed line is measured. In the diagram above, the results are shown in
tables.

• This is repeated for each data point.

• A graph of the line lengths for each angle, known as a Hough space
graph, is then created, Fig. 2.12.

The point where the curves intersect gives a distance and angle. This
distance and angle indicate the line which intersects the points being tested.
In the graph shown the lines intersect at the purple point; this corresponds
to the solid purple line in the diagrams above, which passes through all three
points. (end example)

This could be plotted as a two dimensional histogram as well and would
tend to peak about the purple point. There are two issues with the technique
for the DCH, the density of hits in a central Au-Au collision would require
a prohibitive number of test lines and the peaks are not sharp enough to
separate the tracks in any event. A technique was developed at Stony Brook
to overcome this called the combinatorial Hough transform [14].

What the DCH measures is φ, the azimuthal angle at the intersection of
the track with a reference radius near the mid-point of the DCH, and α, the
inclination of the track at that point, Fig. 2.13. Incidentally, the relationship
to momentum, determined empirically,
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Figure 2.13: This is how pT is determined.

p =
const

α
, (2.6)

which we present without proof.

As one can infer from Fig 2.13, α and φ are natural coordinates for a new
Hough space. All possible pairs of X1 and X2 points are made and then α
and φ are determined for the pair. An example of this is shown for a single
track in Fig. 2.14. The tightly clustered space points are from X1,X2 pairs, the
displaced colored points are from either X1 or X2 only pairs. The presence
of residual magnetic field causes the displacement, X1 and X2 hits are not
collinear in this fringe field. The smearing is because of the greater variation
in angular determination as the points get closer together. Because of these
two points, only X1,X2 pairs are used and as a result the image has dimension
2.75 mrad in φ and 50 mrad in α

Fig 2.15 shows an example of a portion of the DCH on the left and the
Hough space on the right as a lego plot. This is the sort of hit density expected
for AuAu collisions, the tracks are clearly visible. At this point in the tracking
algorithm each of the peaks corresponds to an actual track in the drift chamber.
At the expected multiplicity of a Au+Au collision at RHIC, over 98% of the
tracks from the origin and passing completely through the drift chamber are
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Figure 2.14: Bending-plane Hough space distribution for one sample track.
Black points (tight cluster) correspond to X1 versus X2 hit combinations while
red (upper right streak) and blue (lower right streak) points come from X1 only
and X2 only combinations respectively.

Figure 2.15: Simulated hits in a portion of the drift chamber and the corre-
sponding Hough transform for X1 and X2 wires.
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found from the combinatorial Hough transform with no further tracking. The
ghost track rate is less than 1%[15].

The drift chamber tracking algorithm described above has been imple-
mented in the PHENIX tracking package. Track finding efficiency for the
complete three dimensional algorithm was determined with the help of Monte
Carlo simulations that included realistic detector response and position reso-
lution. More than 92% of all tracks which pass fully through the drift chamber
are reconstructed with fewer than 1% spurious (ghost) tracks[15].

The CPU time to process one central Au+Au event is currently ≈120
SPECINT95[16] seconds, which is about 10% of the total central arm recon-
struction time. Recent studies of the robustness of the algorithm at double
the expected central Au+Au track density show that the tracking efficiency is
still > 80% for this extreme situation[15].

The DCH has one key drawback that is a product of the design trade offs
of PHENIX. The tracking algorithm assumes that all tracks originate from
the origin. The DCH measures α the angle between an infinitely straight
track and a charged particle’s actual track after having passed through the
magnetic field. The DCH has no way of determining a particle’s actual origin,
so the origin is assumed to be the interaction point and the path length in the
magnetic field to be commensurate with this and the measured α. What this
means is that charged particles that originate from a point closer to the DCH
will have less bend per pT and will be assigned a measured PT that is too high.
Anything that decays, K’s or converts, γ’s, into electrons is a potential source
of background.

2.5 Pad Chamber

The PHENIX central arms contain three layers of two dimensional readout
wire chambers called the Pad Chambers Fig. 2.16. The first layer, PC1, is
located just behind the DCH in both central arms. PC3 is installed just in
front of the EMC in both arms. PC2 is located behind the RICH in the
west arm only. The combination of the three PC’s reinforces the tracking
information of charged charged tracks in the r − θ plane. In particular, PC1
is used to determine the z coordinate of charged tracks at the DCH.

Each chamber contains a single plane of wires inside a gas volume between
two cathode planes, one of which is finely segmented into with a novel pad
design to maximize segmentation while reducing the cost at the same time.
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Figure 2.16: Schematic of the PHENIX pad chambers. Some sectors of the
PC2 and PC3 sections are removed for clarity.

Figure 2.17: Concept of a pad chamber.

For complete details of the PC’s please see Ref.[17], we present the basic
principle here.

In Fig. 2.17 we see the basic principle of a pad chamber. A set of wires
held at positive HV are suspended above a grid of conductive pads usually
held at ground. The volume about the wires is filled with a suitable gas as
in a conventional wire chamber. Each pad has a preamp and other associated
electronics. A particle traverses the gap between the wires and the pad plane.
The ionization electrons will drift towards the wires and avalanche as they
approach. The pads see the multiplied image charge and the position of the
hit is simply determined by the pad position, with a resolution governed by
the size of the pads.
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Figure 2.18: Principles of the PC pad geometry.

One can increase the distance from the wires to the pads or shrink the
pad size below the wire pitch to get charge sharing among the pads to allow a
center of gravity calculation. In the case of the PHENIX PC’s the idea of pad
size being the position resolution is sufficient.

In Fig. 2.18 we can see the evolution of the PC pad scheme. Fig. 2.18(a)
is essentially a duplicate of Fig. 2.17 defining the concept of resolution as
a function of pad size and wire pitch. In Fig. 2.18(b) we see three pads of
dimension 3w x 3w, they are displaced as shown and placed on electrically
isolated layers. The area of mutual overlap has dimension w x w just as in
Fig. 2.18(a), a particle that produces an image charge on all three large pads
than can be isolated to the w x w sized area. Each of these large pads has a
preamp and electronics but there are now required 1/3 the number of preamps
as in Fig. 2.18(a) saving cost.

However, realizing this geometry would be costly in and of itself so there
would be no net saving. The cleverness is to design a pad structure that mimics
Fig. 2.18(b) on one plane as seen in Fig. 2.18(c). In PC parlance the new pads
are called pixels, the pixels of the same shade are electrically connected to
each other and to readout electronics. A ”cell” is a group of 3 pixels as seen in
the center of Fig. 2.18(c) inside a superimposed box. The avalanches always
occur on the wires so charge collection is dictated only by pixel geometry. One
sees that the pixel in the center of a cell is smaller than the other two, the
sizes are driven by the goal of equal charge deposition. This ensures uniform
performance of each cell. Furthermore, a particle will always be sensed by
three pixels so the coincidence that can be formed will drastically lower the
number of false hits from noise.

The new ”pad” is now seen in Fig. 2.18(d) and is made of 9 pixels. The
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Figure 2.19: Schematic of Cherenkov radiation.

final z resolution of PC1 at the chamber is 1.7mm. PC1 measures a point just
behind the DCH, providing the z-coordinate of a track thus being essential for
the reconstruction of the three-dimensional momentum of a particle.

The combination of the DCH and PC1 is used to produce the Quality
selection cut used in this analysis. We require hits in X1 and X2 layers of the
DCH and hits in PC1 or at least the stereo, U and V wires. This variable
is presented to the user as a binary word that when converted to decimal
corresponds to these conditions.

2.6 Ring Imaging CHerenkov

The principle electron ID subsystem of PHENIX is the Ring Imaging
CHerenkov (RICH) detector, the complete details of which can be found else-
where [18]. The RICH takes advantage of the fact that it is possible for a
massive particle to exceed the speed of light in a medium that it is traversing.
If this particle is charged it will emit Cherenkov light. If the particle’s β = v/c
exceeds the inverse of the index of refraction,

β >
1

n
=
cmedium

c
, (2.7)

Cherenkov light is emitted.

The angle of this plane wave with respect to the axis of propagation can
be calculated using,

cos θC =
1

βn
. (2.8)

This angle is illustrated in Fig. 2.19
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Figure 2.20: A plot of Eq. 2.10 for π’s and e±’s in the RICH

The RICH is located behind the DCH, Fig 2.21 the cross sectional area
is twice that of its acceptance to provide room for phototube arrays. The
radial extent of the RICH is dictated by providing sufficient path length in the
radiator to produce enough Cherenkov photons for a relativistic electron. The
radiator is 1 atmosphere CO2 gas, it has an index of refraction of 1.00045 and
the path length is 120cm.

To calculate the number of Cherenkov photons produced by a particle we
use the Frank-Tamm formula [19],

dE =
µ(ω)q2

4π
ω

(
1− c2

v2n2(ω)

)
dxdω, (2.9)

this can be rearranged,

N350−500nm
γ = 390 ∗ sin2θC ∗ nCO2 ∗ l. (2.10)

Plugging these parameters into Eq. 2.10, a 0.25 GeV electron has all but
reached the plateau of 42 Cherenkov electrons, Fig. 2.20. Since only electrons
with pT > 0.2GeV will escape the central solenoidal field the conditions are
well satisfied.
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Figure 2.21: The placement and internal layout of the RICH.

The mirrors that reflect the Cherenkov light are spherical, parallel rays
will always reflect to the same point, Fig 2.22a, if we rotate the figure about
the bold line we get a ring. This configuration puts the focal plane in the
acceptance so the actual mirrors are tilted as shown in Fig 2.21.

So we now see how circular rings are projected on to the plane of the
phototube array, Fig 2.22b. The mean value of the radii of these rings is 5.9
cm at the array. Of the several variables associated with the RICH there are
two that are important to this thesis, n0 and n1, Fig. 2.23.

To produce the n0 variable the software looks for clusters of fired photo-
tubes. (Whenever discussing n0 or n1 one must think in terms of number
of phototubes not Cherenkov photons.) An annulus is superimposed centered
about the projected track (provided by the DCH and the DCH’s) of an electron
candidate, n0 is the number of phototubes that have fired that fall into this
mask. The inner radius of the annulus is 3.4cm and the outer is 8.4cm, this
is symmetric about the 5.9cm Cherenkov radius of an electron. In Fig. 2.23
one gets the sense of the dimensional choices. The radii of the phototubes
is 2.5cm and they are arrayed as shown, this size corresponds nicely with the
5.9cm. Of course, not all tracks fall in the middle of a phototube as shown, the
dimensions of the ring accommodate this as well as the distortions of the ring
caused by the reflection and the random fluctuations of the angle of emission
of the Cherenkov radiation.
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(a) (b)

Figure 2.22: The RICH use of a spherical reflector.

With all of these choices one gets an average value of 2-3 for n0 no mat-
ter where the track goes. There are other variables that do incorporate pulse
heights of the phototubes, and thus indicate number of Cherenkov photons.
This becomes important in the higher multiplicity environment of Au-Au col-
lisions and are unnecessary in this analysis.

Figure 2.23: Derivation of RICH Variables.

The other variable in the figure is n1 in which the number of fired pho-
totubes that are contained within a disk is used instead of an annulus. This
disk has the larger radius of 11cm. This is the variable used in this analysis.
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The reason being that there was an error in the code that processed the raw
output of the detector causing a misalignment of the tracks with the actual
rings in the RICH. This misalignment was not so large as to adversely affect
n1. The other reason to choose n1 is that it is easier to model and study the
”turn on” of Cherenkov light from charged π′s with the absence of the hole of
the annulus. This will be discussed further in Chapter 5.

2.7 ElectroMagnetic Calorimeters

The PHENIX ElectroMagnetic Calorimeters (EMC) are the outermost de-
tectors of the central arms. Their job is to measure the energy of the electrons
and photons that are incident upon them. As before, we present some basic
ideas, for complete details please see [20, 21].

Figure 2.24: A cartoon of an electromagnetic shower in a homogeneous block
of material.

A calorimeter measures energy, the term calorimeter is used because a
calorimeter absorbs all of the measured particles energy. A calorimeter has
increasingly better relative resolution as a function of particle energy. This is
true because a calorimeter exploits the particle multiplication process known
as showering. There are two types of such showers, electromagnetic and
hadronic. Electromagnetic showering occurs because of bremsstrahlung, elec-
trons shower, much more massive muons generally do not due to their greater
mass. Photons don’t shower but after pair conversion the electon/positron
pair do shower.

Electrons also lose energy by ionization, also called dE/dx loss which is de-
scribed by the Bethe-Bloch formula. The so called critical energy, Ec, is the en-
ergy at which the loss due to ionization equals that of bremsstrahlung. This is
material dependent, high Z materials will have a low Ec so that bremsstrahlung

25



(a) PbGl (b) PbSc

Figure 2.25: EM showers in PbGl and PbSc calorimeters

is the dominant loss mechanism, a low Z material will be dominated by ioniza-
tion loss. This is exploited in a sampling calorimeter as we shall see shortly.

An impinging electron will bremsstrahl numerous photons until the critical
energy is reached and then ionization loss brings it to rest. These photons then
convert, the pairs then repeat the process until all of the energy is absorbed.
The only difference for an impinging photon is that a conversion happens first.
Because of the multiplication process there are two benefits derived. The first
is that the penetration depth of the shower increases only logarithmically with
the incident energy. The second is that with greater numbers of particles with
greater incident energy the resolution improves. For a complete description of
the operating principles of calorimeters please see these to compilations edited
by Ferbel and Sauli [22, 23].

Fig 2.24 is a cartoon of an electromagnetic shower within a homogeneous
block of material. The shower is completely contained, this can be accom-
plished for example in a block of lead 10cm x 10cm x 9cm deep. This would
not be very practical as it would be difficult to measure any signal. Addi-
tionally transverse segmentation is desirable to be able to separate adjacent
showers. Typical designs have the transverse dimensions of a shower con-
tained in a matrix of 2x2 or 3x3 cells. One can then do weighted averages of
the energy deposition in the cells to determine shower centers and distinguish
showers from particle incident near each other. This is of particular impor-
tance in π0 identification as the EMC is the only PHENIX detector sensitive
to them.

There are two different geometries used in PHENIX to make shower con-
tainment possible while also being able to read out the signal. The first is
the use of lead glass (PbGl) which is a variety of glass in which lead replaces
the calcium content of a typical glass. This raises the density of the glass so
that the electrons will bremsstrahlung and it also raises the index of refrac-
tion. The signal that is read out from a PbGl calorimeter is Cherenkov light,
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(a) PbGl (b) PbSc

Figure 2.26: PbGl and PbSc modules

electrons traversing the PbGl emit both Cherenkov and bremsstrahlung pho-
tons. A typical cell resembles Fig 2.25a, these are wrapped in a light isolating
cover and stacked together. The Cherenkov photons propagate in the general
direction of the incident particle, a phototube of photodiode is glued to the
end the the PbGl to read out a signal.

Fig 2.26a shows a PHENIX PbGl module, the PbGl blocks are approx
4cm x 4cm x 40cm. The parts that attach to the face allow for pulsing with
measured amounts of light to calibrate the system.

The second type of EMC used in PHENIX is a lead scintillator (PbSc)
sampling calorimeter. The concept is seen in Fig 2.25b, layers of lead are al-
ternated with layers of plastic scintillator. Pair production and bremsstrahlung
occur in the lead, which is sometimes referred to as the absorber. The signal
is produced by the shower electrons in the scintillator, sometimes referred to
as the active medium. Energy loss occurs in both media, in fact most of the
energy loss occurs in the lead. This type of calorimeter is called sampling be-
cause only ≈ 20% of the energy is deposited in the scintillator. There is only
a small loss in resolution since relative variation of energy deposition remains
low due to the large numbers of particles in a shower.

The principle advantages of a sampling calorimeter using scintillator as an
active medium is fast response, good for timing information and cost, PbGl is
much more expensive than lead and plastic. Another advantage of sampling
calorimeters is the ease of longitudinal segmentation, which is not practical
in a PbGl calorimeter. Having phototubes at the face would place too much
material in front of the calorimeter and since the Cherenkov light is projected
towards the back of the module, the signal would be very slow with a long
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dwell. Longitudinal segmentation was not used in PHENIX.

The challenge with a sampling calorimeter is to bring the signal out from
the active medium to the transducer, in this case a photodiode. Putting light
guide ”buss bars” along the sides of a cell creates dead areas, ”cracks” in the
detector that are unacceptable. The solution developed for PHENIX was to
interpenetrate optical fibers into the lead and scintillator layers, these can be
seen schematically in Fig 2.25b. A PHENIX PbSc module of four cells can
be seen in Fig 2.26b, in this case a cell is ≈ 5cm x 5cm. The green optical
fibers loop out and back in at the front face of the module. At the back of
the module the fibers from each cell are gathered into a coupling into which
a photo diode is mounted. The stacked squares of lead and scintillator are as
large as four cells, there is no need for optical isolation as the fibers define the
cells. The blue line in the center is a light guide that delivers laser pulses for
calibration.

As previously mentioned the EMC measures energy. The size of the cells is
chosen such that, for an electromagnetic shower, 90% of the energy is contained
in an array of 3x3 cells. This is a compromise between being able to separate
neighboring clusters and the increased cost of smaller cells. In fact, the variable
produced by the EMC that is used in this analysis, called ecore, is the energy
deposited in a 3x3 array centered at the ”center of gravity” of an energy
cluster. The center of gravity is an energy weighted average of the position of
the deposited energy.

The other relevant variable produced by the EMC is called ”prob”, the
probability of a shower being electromagnetic. It is based on the radius of the
total energy deposition around the center of gravity. Because the processes
involved in a hadronic shower are lower cross section, the radius of a typical
hadronic shower is a factor four greater than that of an electromagnetic shower.
The prob variable ranges from 0-1, with one being the most probable, prob
profiles can be seen in Appendix B.1.2.

Most hadronic showers have a prob < 0.1 however whenever a strong force
interaction occurs in matter there is the possibility of a π0 being produced.
A π0 decays electromagnetically essentially instantaneously, 10−27s, into two
photons which then shower electromagnetically.

These now electromagnetically showering hadrons’s will have a greater prob
value and be difficult to discriminate with a cut on the prob variable. Indeed, if
the hadron has a β above the Cherenkov threshold the RICH no longer has the
ability to veto it as well. A new technique of removing these hadrons is then
necessary. This thesis is motivated by the development of such a technique to
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discriminate these unwanted hadrons as will be discussed in Chapter 5.

The EMC also serves as the primary ”enrichment” trigger in this analysis.
The BBC already provides a minimum bias trigger, if we had infinite amounts
of time to collect data we would be able to find all events of interest using only
an MB trigger. Since we have only available a finite amount of time we need
a method to focus the attention of the detector towards events of interest.

The crossing rate at RHIC is ≈ 10MHz not every crossing yields a collision
but in pp PHENIX sees MB triggers at a rate of 50kHz at the beginning of a
fill. Since we can only write to tape at 6kHz we cannot accept every MB trigger
and consequently this trigger is down scaled, the official term is prescale. The
prescale is a limit for a counter, if the prescale is zero then all events are taken,
prescale equal to one means every other event is taken and so on. The collision
rate drops during a fill of the collider so the prescale is adjusted during the
run.

The trigger we use is the simplest case of an enrichment trigger. We are
interested in counting electrons to the highest pT possible. A typical spectrum
of invariant cross section as a function of transverse momentum covers 10
orders of magnitude, electrons at the highest pT ’s are extremely rare.

The trigger we use is called ”ERT4x4c”, the ”E” is for EMC, the ”R” is
for RICH and the ”T” for trigger. The 4x4 means that a trigger ”tile” is made
up of 16 EMC cells in a 4x4 array and the ”c” is a threshold level indicator,
in this case 1.4GeV. A tile is created by sending all of the cell outputs to a
separate set electronic circuit boards that make any grouping that the user
desires.

In fact, this particular trigger does not use the RICH, it only looks for
an energy deposition of > 1.4GeV in an EMC trigger ”tile”. It is commonly
referred to as a photon trigger since it does not require a RICH response
and hence insensitive to charge. The size of the trigger tile is also a clue, a
typical charged particle trigger uses 2x2 tiles, there is no track information for
a photon.
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Chapter 3

Initial Data Processing

Two analysis methods, a converter subtraction method and a cocktail sub-
traction method are the generally accepted techniques to extract the heavy-
flavor electron signal. These are well established methods used in RUN1-
RUN3, RUN4 Au+Au and RUN5 p+p single electron analysis. The converter
method was not used in this analysis as it is primarily used at low pT , where
the measurements are well established. This analysis focuses on the pT range
where the converter technique does not apply. We build on the RUN5 anal-
ysis [24] significantly extending the pT range of the PHENIX single electron
measurement.

Two data sets are used for the analysis: Minimum (MB) data set and
ERT4x4c (ERT) data set. ERT is Electromagnetic calorimeter RICH Trigger,
a certain minimum energy in the calorimeter is required to fire this trigger,
in this way we enhance the collection of high pT events. The format of the
data files is labeled CNT in PHENIX, these are data files that only contain
information from the central arm detectors that are described in chapter 2. In
this chapter we will describe the steps to produce a spectrum of all electron
candidates, the inclusive spectrum. Subsequent chapters will describe the
process to arrive at a final invariant cross section spectrum.

Throughout the text, we document the location and names of analysis
codes, analysis macros, and intermediate ROOT files and other files related to
the analysis. The final analysis are done in directory

/phenix/hhj/themann/analysis
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3.1 Data Files

PHENIX has one of the most efficient Data AQuisition (DAQ) systems in
the world, we have been able to write out 6,000 events per second for the last
5+ years. We have been able to maintain this rate in Run 11 (2011) even with
the introduction of our central Silicon Vertex Tracker with 4,000,000 channels
in the first two (of four) layers. Because of this success, it is not possible to
keep our data instantly accessible. The data are all stored on tape and we
have developed a queuing system to access it.

As with many things in physics we have given it the whimsical name of
Analysis Train as users booked jobs that were added as ”cars” to the train.
The train would start when a set number of ”cars” were assembled. At the
time data were still available on disk but as this went away and as the efficacy
of the train concept was proven, so many users wanted access that the system
needed a re invention. We now have the Analysis Taxi with the implication
of easier, shorter term access, taxi run every week instead of opportunistically
as with the train. Users now develop and test their code, PHENIX has a
standardized procedure for this. The code is then placed it a designated area
in CVS. The user fills out a form at a web page giving paths to their code, to
an output area and to the log files from the testing process. Output from the
train arrives in no more than two weeks in the users area.

We use Analysis Taxi output of Taxi’s 258 and 259 all analysis code used
on data can be found in CVS

https://www.phenix.bnl.gov/viewcvs/offline/AnalysisTrain/se_ana_

lite/

https://www.phenix.bnl.gov/viewcvs/offline/AnalysisTrain/se_ana/

We use MB and ERT CNT files, the outputs are here;

/direct/phenix+hhj/themann/Run6pp200MinBias
/direct/phenix+hhj/themann/Run6pp200ERT

3.2 Overview

In the first step, the CNT files are processed by a program, se ana. The
program applies event selection, fiducial volume cuts and electron identification
cuts, and produces histograms of pT distributions of electron candidates for
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the MB trigger events and for the ERT trigger events. For the ERT trigger pT
distribution, the electron track is required to hit a trigger tile that causes the
ERT trigger. This is to avoid so-called ”random benefit” in the analysis. The
histogramming program also produces many other histograms that are used
to check the quality of the data. One histogram file is produced for each run.

The use of the word ”run” in our field is, unfortunately, somewhat am-
biguous. In general Run with a capital ”R” means the overall contiguous data
collection period. At RHIC this is a yearly process as the shutdown period
is always during the summer months due to the large increase in the cost of
electricity. Data is collected in one hour ”runs” with a lower case ”r”. Ev-
ery ”run” has a unique number and there is no requirement to reference the
”Run” during which it occurred, however, it is customary to refer to data by
its ”Run” number as this offers a more natural association to the species and
collision energy as well as the state of the detector.

Once the analysis code has processed all of the raw data the results then
processed by a series of ROOT macros. The macros manipulate the histograms
in the data set files and derive the cross section of electrons from heavy flavor
decays. These macros are located here;

/phenix/hhj/themann/analysis/1 run QA
/phenix/hhj/themann/analysis/2 trig eff
/phenix/hhj/themann/analysis/3 a dN dphi (acceptance and efficiency)
/phenix/hhj/themann/analysis/3 b selection cuts (acceptance and efficiency)
/phenix/hhj/themann/analysis/3 c ratio (background subtraction)
/phenix/hhj/themann/analysis/4 final spectra

A section follows for each set of macros describing what is done at each
step

The output of these directories are here

/phenix/hhj/themann/analysis/background
/phenix/hhj/themann/analysis/Run6pp200

3.3 Selection Cuts

In se ana, the following cuts are applied to select good electron candidates.

z-vertex cut
This is to avoid tracks that might graze the magnet pole tips.
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−20cm < zvertex < 20cm

Quality
X1 and X2 found and PC1 found/unique.

EMC matching
The difference between a track’s projection to the EMC face and the
center of an energy deposition in same. PHENIX provides sigmalized
variables in φ and z, we add them in quadrature to produce a circular
cut. √

(emcsdphi2e + emcsdz2
e) < 3σ

EMC shower shape
Probability that a shower is electromagnetic

prob > 0.01

RICH
The number of phototubes fired in disk shaped mask

n1 ≥ 5

E/p
A particle’s energy divided by its momentum, for a highly relativistic
electron this is centered at one.

0.80 ≤ E/p < 1.2

Fiducial Cuts
In Run 6 fiducial cuts are applied in simulation using detector dead
maps.(see sec 4.3), any cut applied in simulation is also applied to data.

DCH structure
The DCH has an insulator at the mid point of each wire to separate
Noth and South halves. This creates a pT dependent dead spot
within this 4cm region.

|zDCH | < 2cm

After these cuts, hadron contamination in the electron sample is negligible
in the pT region below π Cherenkov threshold in RICH. At pT > 5GeV/c,
charged π’s start emitting Cerenkov light, and this becomes the main back-
ground source. To reject π background, we have developed a new subtraction
technique that will be discussed in Chapter 5.
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3.4 Run QA

The histogram files produced by se ana are first processed by macros that
perform quality checks of the data. The first Q/A macro is run QA.C. The
objective is to look for variations in the detector response. This is done by
plotting the electron candidate yield per minimum bias event as a function of
run number. At this point there is separate MB and ERT file for each run
number. For this plot an electron candidate is a track that has passed all eID
cuts and is within the pT range 0.6 < pT < 4.0 GeV/c. The lower limit insures
tracks that are easily reconstructed and the higher limit is firmly in the range
where the RICH has maximum discriminatory power.

Figure 3.1: Initial Run 6 Electron Candidate Yield/Event

This plot appears in Fig. 3.1, all available runs are in this plot. Next come
the QA procedures.

First runs with less than 50K Minimum Bias events in are rejected. This
number was 200K in previously published PHENIX Run 5 data [24]. Since
the MB scaledowns are, on average, an order of magnitude higher in Run 6 we
chose the conservative 50K. A scaledown is used to adjust the relative numbers
of event types that are written to tape. In Run 6 one of the objectives was
to sample the pT spectra of electrons at the high end. This means that there
are less MB events per file, it doesn’t mean that there are lesser numbers of
interesting events so we take care not to discard them.

If electron candidate yield per event is less than 2x10−4, the run is rejected
as a bad run as this is an indication of a sub-system failure during the run.
After these bad runs are rejected the plot is examined for systematic variations
in yield, this would indicate a section of a sub-system becoming inoperative
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Figure 3.2: Run 6 Electron Candidate Yield/Event

(or restored). If none are seen, the average electron yield for the entire data
set, < Ne >, is calculated. Any run in which the electron yield is more than 3σ
from < Ne > are rejected as a bad run. Once again the yield plot is checked
for systematic variations.

The average of the remaining set of runs is calculated and the 3σ cut is
then applied once again, and once again the yield is checked for consistency.
This is repeated for a total of five times. The end result is that in Run 6 804
runs and 555 runs, respectively.

The purpose of this process is to prepare for correction of the measure-
ment for acceptance and efficiency (sec 4.3). It is not possible to correct for
acceptance and efficiency on a run by run basis. A reference run is chosen by
common assent of the various sub-system experts as representing the average
behavior of PHENIX over the course of a Run. This is used as the model for
the simulation that is used in the acceptance efficiency correction process.

If a systematically low or high yield group of runs were to be found then
separate list of runs would be produced and Run Q/A process would applied
to the groups individually. The average yields of these groups would be nor-
malized to the group containing the reference run and there would be a slight
increase of the systematic error on the corrected groups.

The electron yield per MB event per run for Run 6 in Fig. 3.2. The electron
yield per event is quite stable over the course of the Run. The stable electron
yield is a result of the stringent fiducial cuts applied. The parts of the central
arm detectors that are intermittently working are removed by the fiducial cuts.
In the event that the detector response was not stable

Once a list of each of the runs that passed the MB run Q/A check is
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obtained, the electron yield per MB sampled event is measured. This is done
by a macro c comp mb ph.C.

To determine the electron yield per sampled event, one needs to know the
number of sampled events in the data set. We determined the sampled events
as follows. For each run, we have a MB trigger histogram file and a ERT
trigger histogram file. Each of them has a histogram of the BBC z vertex
distribution (hbbcz). From this histogram, number of events in MB and ERT
triggered events after the z vertex cut −20cm < z vertex < 20cm is counted.
The number of events in the MB file is then scaled up by the scaledown factor
(+1),

N sampled
MB = NMB

recorded ∗ scaledownfactor + 1. (3.1)

This N sampled
MB should be the number of sampled MB events in the ERT

trigger file, if both of the MB and the ERT trigger file come from the same set
of CNT’s. Unfortunately, in Run 5[24] this was discovered not to be the case.
Some of the segments were lost or crashed or not processed for some reason
during production, so these two data sets could have different statistics.

To check and correct for this potential problem, we compared the number
of MB triggered events in the ERT data set (NERT

MB ) and the number of
ERT triggered events in the MB data set (NMB

ERT ). Since both of them are
the number of ERT&MBscaled trigger events in the run, these two numbers
should be identical if the original data set is identical, and their ratio should
equal one. However, if some of the run file segments are lost for any reason
during the data processing, this ratio deviates from unity. The ratio then can
be used to determine the true sampled MB triggers in the ERT data set.

The distribution of the ratio,

ERT :: MB =
NMBscaled
ERT

NERT
MB

, (3.2)

is shown in Fig. 3.3. In the 605 good Run 5 MB runs we processed, 392
runs (60%) have the ratio exactly 1.0. This means that for these 392 runs, the
ERT data set and the MB data set has the identical original CNT segments.
In most cases this means that no file segment is crashed in production of
CNT’s or their transfer from CCJ (Japanese computing center) to RCF (RHIC
Computing Facility) or during the processing of CNT files (which are the
output of CCJ and RCF) to produce the histogram files. We accepted 569
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Figure 3.3: The ratio of MB::ERT trigger in the MB data set and the ERT
data set for the Run 5 data set. One entry of the histogram is for one run

runs within 0.5 < ratio < 2.0. In Run 6 the ratio is 1.0 for all runs Fig. 3.4.
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Figure 3.4: The ratio of MB::ERT trigger in the MB data set and the ERT
data set for the Run 6 data set. One entry of the histogram is for one run
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Chapter 4

Inclusive e± Cross Section

E
dσ

dp3
T MB

=
1

N
MB recorded

· 1

2π
· 1

2
· 1

pT
·
N
e MB
∆pT

· 1

∆y
·

σpp tot · εBBC
εreco(pT ) · εbias(pT )

.

E
dσ

dp3
T ERT

=
1

N
MB live

· 1

2π
· 1

2
· 1

pT
·
N
e ERT
∆pT

· 1

∆y
·

σpp tot · εBBC
εreco(pT ) · εbias(pT ) · εERT (pT )

.

(4.1)

The various factors are;

• NMBrecorded number of Minimum Bias events recorded in MB data.

• NMBlive number of live MB events in ERT files, Eq. 4.34.

• Ne
δpT

”raw” electron count in pT bin, δpT = 0.1GeV .

• 1
2
→ e++e−

2
our measurement counts all electrons.

• εBBC = 0.516± 0.051 BBC efficiency for Minimum Bias [25].

• 1
εbias(pT )

= 1
0.750±0.02

BBC trigger bias towards ”hard” scatterings [26].

• σpp = 42.2mb± 1.9 pp total inelastic cross section [25].
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4.1 ”Raw” Electron Yield

The first thing to do in any spectroscopic measurement is to tally up the
”raw” count over the spectrum we are measuring. We use a standard set of
20 pT bins, ”1.2-1.4”, ”1.4-1.6”, ”1.6-1.8”, ”1.8-2.0”, ”2.0-2.5”, ”2.5-3.0”, ”3.0-
3.5”, ”3.5-4.0”, ”4.0-4.5”, ”4.5-5.0”, ”5.0-6.0”, ”6.0-7.0”, ”7.0-8.0”, ”8.0-9.0”,
”9.0-10.0”, ”10.0-11.00”, ”11.00-12.00”, ”12.00-13.00”, ”13.00-14.00”, ”14.00-
15.00”, all GeV. The counts in each of these bins are listed in Table A.1, here
the two columns labeled 0.8 ≤ E/p < 1.2, the other two columns refer to the
background subtraction described in Chapter 5.

4.2 BBC Correction Factors

The BBC efficiency is the fraction of the total pp cross section that he
BBC actually triggers on, this factor was measured to be 0.516 [25]. The
total inelastic cross section for pp collisions at 200GeV is 42.2mB, 51.6%,
21.8± 2.1mb, registers in the BBC. This contributes a systematic error to the
normalization of the final measurement of 2.1/21.8 = 9.6%.

The BBC depends upon particle multiplicity produced by the collision,
obviously direct parton parton scattering will produce higher multiplicity than
soft scattering, diffractive and double diffractive will have even less. This
means that the BBC will tend to trigger on a higher fraction of hard scattering
events than non hard scattering events, the BBC is biased.

This bias, εbias(pT ), was measured in [26] in π production in pp collisions
at
√

(s) = 200GeV with the following technique

• An unbiased sample of events was created using the ERT trigger without
the BBC.

• The BBC trigger bias was calculated as the fraction of ERT events that
also have the MB trigger fired function of pT .

The result is seen in Fig.4.1, the fit sets the value εbias = 0.75 ± 0.02
independent of pT . The uncertainty in εbias contributes a systematic error to
the measurement as it affects the number of Minimum Bias events recorded,
we quote this error as 0.02/0.75 = 2.7%.
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Figure 4.1: BBC trigger bias as a function of π0 pT with a zeroth order poly-
nomial fit.

4.3 Acceptance and Efficiency

A measurement with any detector needs to be corrected up to the total
phase space of mother nature. This is for two important reasons. The first is
that no detector can cover the full 4π steradian, any measurement has to be
augmented by a calculation of what would hit the missing pieces. The second
effect is that we use selection cuts to enhance the purity of the sample we
measure. In the ideal case, these cuts eliminate non-electrons while accepting
only electrons. In reality, the cuts eliminate electrons as well, the best we
can hope for is to preferentially eliminate non-electrons. Consequently our
measurement has to be augmented by our calculation of how many electrons
our cuts eliminate.

Acceptance and electron reconstruction efficiency is calculated by using
a detector simulation, PHENIX Integrated Simulation Application (PISA).
Each of the central arm detectors used in this analysis is represented in this
simulation and behaves as the real detector. Electron tracks are generated and
propagated through the detector, the simulation also contains the performance
of the readout electronics. These electrons are generated homogeneously in;

• pT , 0 < pT < 20GeV

• pseudorapidity, −0.5 ≤ η ≤ 0.5
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Figure 4.2: dN
dφ

plot for Run 6

• azimuth 0 ≤ φ < 2π

• z vertex, −30 ≤ z ≤ 30cm

They are then run through PISA to produce CNT files (simCNT) that are
exactly the same as real data CNT’s. The simulation analysis code is virtually
identical to se ana, all of the same electron ID cuts are applied and the same
histograms are filled. To ensure that we will perform a proper correction we
first check that PISA has a correct physical description. This is seen in Fig. 4.2
where the yield of electron candidates is plotted differentially in φ. There is
a further restriction in addition to our standard electron identification cuts
in that the pT of candidates in the plots is restricted to be from 0.6 GeV to
4.0 GeV. In this way we get very straight tracks at the low end and at the
high end we are below the Cerenkov threshold of the RICH. What this does is
assure that we are looking only at electrons with a high degree of confidence.

An electron candidate will only be placed in this plot if all detector elements
are functioning properly, this plot is handy as a quick snapshot of the PHENIX
health. The dead areas in PHENIX are entered into the PISA simulation, we
then produce this same plot and overlay it with real data. As one can see from
the figures we have good agreement in Run 6.

To calculate the systematic error introduced by the physical match of de-
tector and simulation we divided Fig. 4.2 into eight φ sections. These roughly
correspond to the eight EMC sectors but there is not a direct correlation to
this in the number of slices chosen, a greater or lesser number would also suf-
fice. For each slice the ratio of the integrals was made, then the RMS was
computed,

xRMS =

√
x2

1 + x2
2 + ....+ x2

8

8
, (4.2)
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Ratio 1 1.0057
Ratio 2 1.0107
Ratio 3 0.8796
Ratio 4 0.9069
Ratio 5 1.0063
Ratio 6 0.9521
Ratio 7 1.1994
Ratio 8 1.1309
RMS 1.0048

average2 1
σ 0.0986

rel. er. 9.86%

Table 4.1: dN
dφ

systematic error numbers.

this was used to compute the standard deviation or σ of the ratios,

σx = sqrtx2
RMS − x̄2. (4.3)

The results are in Table 4.1, so we quote this error as 10.2%.

We now can feel confident that the physical description of PHENIX in
PISA is correct, we now move on to insuring that the response of the detector
in PISA matches the response in the ”real” world.

4.3.1 Matching of E & p: Data and PISA

It is well known in PHENIX that PISA does not exactly model the detector.
For example, as will be shown, the n1 curves of PISA do not match data.
The background subtraction technique, that will be described in subsequent
sections, for single electrons at high pT requires a detailed understanding how
each source of background contributes. Our principle figure of merit is the E/p
profile and our modeling tool is PISA. In the past we have come up with an
adjustment of the E/p variable to match PISA output to data for calculating
electron ID efficiencies. This is easily justified since, for electrons, E/p is
centered about 1.

As we have progressed into background subtraction it became increasingly
obvious that a separate smearing of E and p was necessary both because
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Figure 4.3: Some Examples of E/p Profiles with Gaussian Fits

the variable of interest is obtained by division, the effect of σpT is obviously
non-linear. Therefore it is critical to insure that σpT be well understood and
that the response of PISA matches this behavior. The further benefit is an
improvement of the systematic error introduced by using the PISA simulation
to correct up the data.

First we will show how the resolution is determined in both data and PISA.
How we smeared originally. How we smeared at the end of the day

Determining µ and σ of E/p

We use a standard set of 20 pT bins, for each of these pT bins the E/p
profile is plotted with all other eID cuts applied, four examples are shown in
Fig. 4.3.

A Gaussian fit is then made to the electron peak in each distribution, the µ
and σ of each fit is extracted and plotted as a function of pT . This procedure
was repeated for e± generated in PISA and for the E/p peak about one in
data. The results are plotted in Figures 4.4 and 4.5.

Each of the plots has a fit to the points. In the case of the µ’s a simple
plateau function was used,
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Figure 4.4: µ of E/p profiles as a function of pT

f(µ) =

 par0

exp
(
−pT−par1

par2

)
 . (4.4)

Derivation of σ Fit Function

The function to fit the σ′s is not simply one of convenience. E/p is de-
termined by combining the measurements of two different subsystems with
very well understood resolution characteristics. The measurement of the en-
ergy is done by the Electromagnetic Calorimeter (EMC). The resolution of a
calorimeter is,

σEMC =
CEMC

0√
E
⊕ CEMC

1 , (4.5)

the resolution improves with increasing incidence energy.

The measurement of the momentum is made with the Drift CHamber
(DCH). The resolution of the DCH is,

σDCH = CDCH
0 p⊕ CDCH

1 , (4.6)
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Figure 4.5: σ of E/p profiles as a function of pT

the resolution degrades with increasing momentum. This leads us to a f(σ)
overall for E/p,

σE/p =
CEMC√

E
⊕ CDCHp⊕ Ccombined. (4.7)

Since we fit this function to E/p there is no way to disentangle the con-
stant terms for the DCH and EMC consequently our equation has a combined
constant. We now fit this equation to data and MC e± as seen in Fig.4.5.
The fit is quite good as would be expected since the resolution equations for
calorimeters and drift chambers are well understood.

The salient feature of Fig 4.5 is that PISA is not a good replication of the
data as we need and expect if we are to use PISA with confidence. In the past
we (among others) added a smearing factor to the calculated value of E/p
within our simulation analysis code so the the µ’s and σ’s of data and MC
matched. This is fine for acceptance and efficiency calculations for electrons,
where E/p is centered about one.

We are interested in a precise modeling of backgrounds, principally π’s
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and this technique breaks down since the values of E/p for π’s cover a broader
spectrum where we can’t depend on the relationship between the resolutions
to track as they would for electrons. Consequently we decided to smear E and
p separately.

Smearing Technique

Our method of smearing was to determine a ”goal” number for a factor in
the resolution function, Eq. 4.7. In the first approximation this would simply
be factors extracted in the fit to the data. We then subtracted in quadrature,

√√√√√√
E ∗

√√√√(Cgoal
1√
E

)2

+
(
Cgoal

2

)2


2

−

E ∗
√(

CMC
1√
E

)2

+ (CMC
2 )

2

2

.

(4.8)

This quantity we call σsmear and we use it to generate a random number
from a Gaussian distribution centered about zero with σ = σsmear. We call
this number Esmear and we add it to the PISA reconstructed E. Recall that
the σ we use is a relative error, we multiply this to the PISA energy to get the
absolute amount that is to be added(subtracted) from the PISA energy such
that its ultimate σ is the one we desire,

E = (0.96 ∗ E) + Esmear. (4.9)

The 0.96 in Eq. 4.9 is from the fit to the µ’s, Eq. 4.4 and Fig. 4.4, this
brings the µ of E/p in MC to the same value of data.

Before we begin the discussion of the momentum smearing we digress mo-
mentarily to go over how the DCH determines a particle’s momentum. Fig
4.6 is a schematic of this measurement. What the DCH actually measures is
the angle, α between the particle’s track and a radius vector at the reference
radius. The momentum is then,

p =
constant

α
. (4.10)

The constant in Eq. 4.10 was determined by a fit to reconstructed 1/α vs. momentum
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Figure 4.6: Drift Chamber determination of p

and is equal to 92.

Since it is the variation in α that determines the momentum resolution
we smeared α in MC. Pisa does not write out αgenerated only pgenerated. So we
rearranged Eq 4.10 to get,

αgenerated =
92

pgenerated
, (4.11)

and

αreconstructed =
92

preconstructed
. (4.12)

So once again we do a subtraction in quadrature,

ασ =

√(
αgen ∗

√
(pgen ∗ Cgoal

1 )2 + (Cgoal
2 )2

)2

−
(
αgen ∗

√
(pgen ∗ CMC

1 )2 + (CMC
2 )2

)2

.

(4.13)

ασ is then used to generate a random number from a Gaussian distribution
centered about zero with σ = ασ. This random number is than added to
αreconstructed to smear it and we then get;
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preconstructed(smeared) =
92

αreconstructed(smeared)

(4.14)

So at the end of the smearing day,

E

p
=
Ereconstructed(smeared)

preonstructed(smeared)

. (4.15)

What Goal, Smearing?

In our initial smearing efforts we set the goal value as those that we ex-
tracted from a fit to data. The limits of the fit were set to stay below the
π threshold in the RICH. However this does not properly sample the region
where DCH resolution dominates so we decided to search for independent ways
to determine the goal values.

The resolution of the EMC was determined by others in the PHENIX
collaboration [27] to be,

(
δE

E

)
=

(
8.0√
E

)⊕
(5.0). (4.16)

A dilepton invariant mass spectrum contains, among other things, two
peaks from the decay of the J/ψ and the φ mesons, Fig. 4.7.

To determine the resolution of the DCH we used the width of the J/Ψ and
φ peaks from the dielectron invariant mass in Run8 dAu. We start with the
relationship between mass width and momentum width,

√
2
δm

m
=
δp

p
. (4.17)

For the J/Ψ this is,

δm

m
=

51.1

3082
= 1.66% (From Fig. 4.8), (4.18)

This implies,
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Figure 4.7: Invariant mass spectrum of dielectrons [2]

Figure 4.8: Fit to J/Ψ peak, Run8 dAu dielectrons [2]
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(
δp

p

)
J/Ψ

= 2.34%. (4.19)

Then for the φ,

δm

m
=

9.59

1012
= 0.95% (From Fig. 4.9). (4.20)

Once again for the momentum width,

(
δp

p

)
φ

= 1.34%. (4.21)

We square the terms of Eq.4.6

(
δp

p

)2

= C2
1p

2 + C2
2 . (4.22)

We have two values of
(
δp
p

)2

,

J/Ψ→ 2.342 = C2
1(1.774)2 + C2

2 (4.23)

and

φ→ 1.342 = C2
1(0.650)2 + C2

2 . (4.24)

We then have two equations and two unknowns. If we subtract Eq. 4.24
from Eq. 4.23 and re arrange we get

C2
1 =

(2.342 − 1.342)

(1.7742 − 0.6502)
(4.25)

C1 = 1.16% ⇒ C2 = 1.1%. (4.26)

We then plug in the parameters from Eq. 4.26 into 4.13 and Eq. 4.16 into
Eq. 4.8, re run our MC analysis code. The results are in Fig. 4.10.

51



Figure 4.9: Fit to φ peak, Run8 dAu dielectrons [2]

Figure 4.10: Final Fit to E/p σ’s
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Recalibrator Contribution to Systematic Error

The mass of the J/Ψ is known to 0.00035%, 3096.916 ± 0.011MeV [28],
the width in di electron decays is 5.55±0.14keV so we assign zero error to the
mass measurement and the width of the invariant mass peaks is solely from
the detector resolution.

For the J/Ψ,

δp

p J/Ψ

=
√

2
δm

m
=
√

2
51.1± 2.36

3082± 0
. (4.27a)

The error propagation is,

(
σ δp
p

δp
p

)2

=
(σδm
δm

)2

+
(σm
m

)2

, (4.27b)

plugging in numbers,

( σ δp
p

2.34

)2

J/Ψ

=

(
2.36

51.1

)2

+

(
0

3082

)2

, (4.27c)

So the contribution to the systematic error from J/Ψ is,

σ
J/Ψ
δp
p

=
2.36

51.1
∗ 2.34 = 0.11. (4.27d)

Recall the equation for the relative uncertainty of the DCH resolution,

(
δp

p

)2

= C2
1p

2 + C2
2 . (4.28)

Equation 4.28 tells us that the maximum combined uncertainty of C1 and
C2 is 0.11

2.34
. To begin we assign zero error to C2 and assign all of the error to

C1,

(
σ( δp

p
)2

( δp
p

)2

)2

=

(
σC2

1

C2
1

)2

+

(
σC2

2

C2
2

)2

, (4.29a)
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Figure 4.11: Overlay of E/p profiles from simulation. Three curves corre-
sponding to the central, upper and lower values of the C1 parameter.

with σC2 set to zero we get,

(
σ( δp

p
)2

( δp
p

)2

)
=

(
σC2

1

C2
1

)
, (4.29b)

once again plugging in numbers,

(
0.37

5.50

)
=

(
σC2

1

C2
1

)
= 6.66% rel. error. (4.29c)

Because C1 is implemented as C2
1 in code it was decided to choose the

relative error on C1 as 6.66%. In PISA, Cgoal
1 was raised(lowered) by 6.67%

and the E/p profiles were compared to the E/p profiles when C1 has it’s central
value of 1.16%. The profiles are plotted in Fig. 4.11, they are normalized to
number of events generated.
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Figure 4.12: Relative uncertainty of E/p as a function of pT

The relative uncertainty of E/p was calculated as follows,

Y ield =

∫ 1.2

0.8

E/p. (4.30a)

This yield was calculated using the central, upper and lower values of C1,

Relative Uncertainty =
|Y ieldcentral − Y ieldupper(lower)|

Y ieldcentral
∗ 100%. (4.30b)

The upper and lower values were averaged and then fit with a third degree
polynomial, Fig. 4.12, the fit will be used to combine systematic errors. A
similar variation of the C2 parameter was made as well, C2 for the DCH was
chosen to be 1.1%, this was varied by ±0.11%, the resulting variation in the
E/p yield was from 0.01% to 0.08%, it was decided to ignore this contribution
to the systematic error.
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4.3.2 Verifying Selection Cuts

In the previous section we demonstrated that we have successfully matched
the energy and momentum performance of PISA to the PHENIX detector, and,
consequently, that the behavior of E/p in PISA is reliable. Now we need to
verify that remaining selection cuts in PISA behave in the same manner as
the selection cuts in the real detector.

The first cut is the EMC matching cut, this is the distance between the
projection of a charged track to the face of the EMC and the center of gravity
of an energy deposition in a 3x3 array of EMC cells. The user is presented
with this distance in φ and z at the EMC expressed as σ’s. We add these in
quadrature to produce a circular cut that we call dtrk,

dtrk =
√

(emcsdphi2e + emcsdz2
e).

Figure 4.13: Yield as a function of the EMC matching cut.

In Fig. 4.13 we plot the fractional yield as a function of the dtrk variable.
All other eID cuts are applied and, as before, pT ≤ 4.0GeV/c well below the
π threshold in the RICH. We see that at the cut value of dtrk < 3σ there
is a small discrepancy between data and simulation. A plot was made of the
efficiency of the dtrk variable, defined as the yield @ dtrk < 3σ divided by the
yield @ dtrk < 10σ. This was done for data and simulation as well as a ratio
of data to simulation.

56



Figure 4.14: EMC matching cut efficiency.

The dtrk profiles in the pT range of the fit are seen in Appendix B.1.1, they
are well matched and justify a simple multiplicative correction. The result is
a small 0.948 additional factor in the acceptance/efficiency correction. The
relative error in this factor is 0.005/0.948 = 0.0053, we quote a systematic
error of 0.53%.

The prob variable is plotted in Fig. 4.15, we that there is little or no
departure between data and simulation over the entire range of prob. Once
again an efficiency plot was made as well as a ratio of data simulation, Fig 4.16.
The prob profiles in the pT range of the fit are seen in Appendix B.1.2, they
are also well matched and justify a simple multiplicative correction. The result
is a small 0.985 additional factor in the acceptance/efficiency correction. The
relative error in this factor is 0.005/0.985 = 0.0051, we quote a systematic
error of 0.51%.

The fractional yield plot for n1, Fig 4.17 reveals a discrepancy that is too
large to ignore. The difference in fractional yield at n1 ≥ 5 is just short of 20%.
The solution to this issue is to set n1 cut to n1 ≥ 3 in simulation and then, in
data, make a ratio of the yield at n1 ≥ 3 to n1 ≥ 5 as seen in Fig 4.18. The
ratio is fit with a zeroth order polynomial below the π threshold, this value is
used as an additional scale factor to create the inclusive yield, Sec. 4.6.

The efficiency of the n1 cut for both simulation and data is plotted in
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Figure 4.15: Yield as a function of the prob cut.

Figure 4.16: EMC shower shape cut efficiency.
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Figure 4.17: Yield as a function of the n1 cut.

Figure 4.18: Ratio, in data, of n1 ≥ 3 to n1 ≥ 5.
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Figure 4.19: n1 efficiency at n1 ≥ 3 for both data and simulation.

Fig 4.19 with straight line fits. The peak of the n1 distribution is slightly
higher in simulation, 5.1, than data, 4.9, (see profiles App. B.1.3) so we expect
the n1 ≥ 3 cut to be less efficient in data than simulation and that is exactly
what we see in the figure. Also plotted is the data efficiency divided by the
simulation efficiency which shows us that the acceptance/efficiency correction
needs an overall correction factor of 0.987. The relative error on this fit is
0.004/0.987 = 0.004 so we quote a systematic error of 0.40%. An additional
systematic error is introduced by the fit of Fig 4.18, but since the relative error
is 0.004/1.557 = 0.26% to give a total systematic of 0.47%.

The final result is a correction factor of 0.922 to the final correction curve
of the next section with a fixed systematic error of 0.877% to go with the pT
dependent systematic of the E/p cut.

4.3.3 Final Correction Curve

Once that we are assured that the PISA simulation physically matches the
real detector and that the selection cuts are equivalent, we have to deal with
another aspect of taking measurements, the bias introduced by a detector with
finite resolution. We do this by weighting the flat input spectrum of simulated
electron tracks with a power law,
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w = pT ∗ 0.786 ∗ (0.547 + pT )−6.87. (4.31)

The weighting function used, Eq. 4.31 approximates the expected spectrum
of decay electrons from heavy quarks. In the final analysis, we use a fit to
previously published data to further fine tune our simulation, this will be
discussed in subsequent sections.

The reason for doing this is explained in detail by Mike Tannenbaum [29].
The summary for the case in point refers to Fig. 4.20. The numbered boxes
are pT bins, the solid diamonds the ”true” spectrum. As already discussed,
the momentum measurement is made by the DCH whose resolution goes as p.
Consequently the resolution worsens as we go higher in momentum.

In Fig. 4.20 this is represented by the gaussian centered in each pT bin. The
mean represents the true momentum, the distribution the range of measured
values for this true momentum. Particles in a particular gaussian that fall into
another bin will be plotted in that bin and so will be incorrectly measured. If
the parent spectrum was flat, there would be equal numbers of particles from
either side of the gaussian contributing to neighboring bins. Since the parent
distribution is steeply falling there are more particles in the lower edge of the
gaussian so the neighboring bin on the low side gets preferentially filled and
the resulting spectrum is flatter as represented by the crosses.

So, a pT spectrum is produced by histogramming the reconstructed pT ,
weighting each fill by the weight function. To produce the correction curve
this histogram is then

• Scaled by pT range generated
bin width

∗ 1
Ngenerated

= 20GeV
0.10GeV

∗ 1
Ngenerated

= 200
Ngenerated

.

• Scaled by vertex range generated
vertex range used

= 30cm
20cm

= 3
2
.

• Scaled by 1
weight function

.

In the end we have the result of what we got out divided by what we put
in, Fig. 4.21, the curve is fit with this function,

p0 + p1 ∗ pT + p2 ∗ p2
T

1 + exp
[
−pT−p3

p4

] . (4.32)

The raw pT spectra of both MB and ERT data are then divided by this fit,
εreco(pT ) and multiplied by the fit of Fig. 4.18.
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Figure 4.20: The effect of finite resolution on steeply falling spectra

4.4 Trigger Efficiency

For the ERT trigger data analysis, the trigger efficiency, εtrig needs to be
corrected for. The trigger efficiency is determined from the MB data set as
a fraction of electrons that satisfies the 4x4c photon trigger. This is a simple
trigger in that it is fired when an energy deposit of > 1.4GeV is detected in
a 4x4 array of EMC towers It is required that the trigger tile that sets the
trigger be hit by the electron candidate to avoid the ”random benefit” in the
trigger efficiency.

In Fig. 4.22 we see plotted the raw pT spectra from both MB & ERT files.
Since the purpose of the ERT trigger is to enrich the yield of High pT electrons
the curve of triggered data from the ERT files lies above the MB data as one
would expect.

As has been previously mentioned, a part of this enrichment process is
that not all MB events are written to tape, a certain fraction are arbitrarily
rejected. This is done with a scale down factor, if the scale down factor is
equal to n, every n+1 event is written. Conversely, if we have m scaled events
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Figure 4.21: Acceptance and Efficiency Correction Curve for Run 6

recorded and a scale down factor of n, then the total number of events sampled
is; Nsampled = m ∗ (n+ 1) or,

N sampled
MB = NMBrecorded ∗ (scaledownfactor + 1). (4.33)

There is a limited number of events per second that can be written to
tape, this is referred to as the bandwidth. The use of scale downs adjusts the
fraction of this bandwidth that is allocated to each trigger type. Since the
specialized triggers are usually of rarer events the MB receives the greatest
scale down, the others low or none at all. This is a contributing factor in the
relative magnitude of the curves in Fig. 4.22.

The two MB file curves in the plot are of minimum bias & triggered data.
This plot shows the three things that need to be corrected.

The first is that by requiring a trigger tile to fire the acceptance of the
detector is somewhat lower than without this requirement. Unfortunately
there will be malfunctioning trigger tiles either dead or hot, which are then
turned off. The evidence of this is seen in the two MB file curves, the triggered
data, above the trigger threshold, is always somewhat lower than the minimum
bias curve.

The second factor is the normalization factor, the triggered data is to
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Figure 4.22: Run 6 raw pT spectra

extend the minimum bias data and, at the end of the day, the measurement
is quoted as per event. In the case of the MB data the normalization factor is
the number of minimum bias events recorded, NMBrecorded , in the case of the
triggered data this factor is the number of minimum bias live events, NMBlive ,
the number of minimum bias triggers that would have occurred if there were
no scale downs,

NMBlive =
NMBrecorded ∗ (scaledownfactor + 1)MB

(scaledownfactor + 1)ERT
. (4.34)

So the minimum bias spectrum is scaled by 1/NMBrecorded and the triggered
spectrum is scaled by 1/NMBlive .

The third and final factor is the turn on curve of the triggered data. The
nominal threshold value of the trigger is 1.4 GeV but due to noise in the
electronics some lower energy electrons will fire the trigger and some higher
energy electrons won’t. It’s only when the energy of the electrons is above 2
GeV that all of them fire the trigger all of the time.

The triggered spectrum from the MB file is divided by the minimum bias
spectrum also from the MB file. The resulting ratio is then fit to produce a
correction function. Fig. 4.23 shows the trigger efficiency of the 4x4c trigger
thus determined. The effective trigger threshold is about 1.4 GeV, and the
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Figure 4.23: Run 6 trigger efficiency

efficiency saturates above 2 GeV. The trigger efficiency at the plateau is≈ 86%.
The curve in the figure is a Fermi function,

εtrigger =
constant

exp[−pT−numerator
denominator

]
, (4.35)

that is fit to the data. This fit function is used as the trigger efficiency in
the analysis.

The triggered spectrum, from the ERT file, is then divided by the fit func-
tion and the result is seen in Fig. 4.24. The most important feature of this
plot is the overlap region of the two curves, the triggered and minimum bias
lie directly on top of each other. This demonstrates that both the fit and the
normalization are correct. One can notice that the correction to the low end
of the triggered spectrum is not correct, this is not of concern since we only
use the minimum bias data in this pT range.

4.4.1 Systematic Error of Trigger Correction

Since the ERT triggered data set is used only at the high pT region where
the trigger efficiency is at its plateau value, only the error on this value is
significant. In Fig. 4.25 is plotted the MB spectrum of Fig. 4.24 divided by
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Figure 4.24: Run 6 corrected and normalized spectra

the ERT spectrum. This is ”zoomed in” to the overlap region where there are
still a sufficient statistics in the MB spectrum to allow a comparison. There
are three factors involved in this comparison, NMB recorded, NMB live and the
trigger plateau.

The two normalization constants have a systematic error from the BBC, in
this case only the error would be in a mismatch of the recorded counts in MB
and ERT files. We know that this is not an issue from Fig 3.4 in Sec. 3.4, there
are no mismatch in the book keeping of the numbers of MB and ERT Triggers.
Consequently the only error is due to the trigger plateaus determination. We
see from the fit in Fig. 4.25 that the matching of MB and ERT spectra are
indeed quite good, the ratio is 0.982± 0.31 so we take the systematic error of
the trigger correction to be 3.2%.
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Figure 4.25: Ratio of MB to ERT

4.5 Bin Width Correction

We are trying to measure a differential distribution in pT , specifically an
invariant cross section. Due to limited statistics we cannot measure the yield
for each pT , what is done is that we make a measurement over a range of pT ’s,
that we call the bin width, and then take the average value of the bin as our
measured yield. The average value is the yield in the bin divided by the bin
width.

For a steeply falling spectrum, with increasing pT , the actual pT corre-
sponding to the average value of the bin is to the left of the center. All initial
histograms use bins that are 0.1GeV wide and the error introduced by as-
suming that the yield of the bin corresponds to the pT of the center of the
bin is negligible. As has been mentioned, we have a standard set of 20 bins,
the last several bins are 1 GeV wide as they are the sum of 10 0.1 GeV bins.
The statistics are limited at the highest pT ’s, summing bins allows a smaller
relative error at the price of less resolution of the shape of the spectrum. The
error is now too large to neglect and must now be corrected for.

Since the actual value is to the left of the bin center the realized measure-
ment tends to be too high as it is assumed that the center of the bin is the
correct pT . The standard PHENIX technique when re binning is to adjust the
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height of the bin such that the center of the bin represents the value of the
measurement at the pT that is the bin center. The technique is as follows.

First, the spectrum is fit with a modified power law with the bin centers
as the initial pT values,

f(pT ) =
A

(p0 + pT )2
. (4.36)

This is a commonly used and accepted function that replicates the pT
spectra of interest. Next find the values of pT at which the above function
takes on its average value in each bin by solving for pT in the equation

〈f〉[a,b] ≡
1

b− a

∫ b

a

f(x)dx = f(pmeanT ). (4.37)

Where a and b are the lower and upper edges of the bin respectively.
Plugging Eq. into Eq. 4.37 we can solve for pmeanT ,

pmeanT =

(
A

〈f〉

)−n
− p0. (4.38)

Each of the calculated pmeanT ’s are substituted for the bin centers of the
(x,y) pairs. This is iterated until the pmeanT ’s converge.

The last step is to re scale the value of the bin such that the center of the
bin does indeed correspond to the bin value,

y′ = y ∗
f
(
b−a

2

)
f(pmeanT )

. (4.39)

This gives us the value of the invariant yield at the value of pT at which the
final plotted data point rests, so we can compare to other data and theories
in a way which is independent of any particular momentum binning. The
assumption which this procedure relies on is that the invariant differential
yield as a function of pT does not wildly oscillate, which is quite reasonable.
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4.6 Inclusive Spectra

All of the factors are now plugged into Eq. 4.1 for the MB and ERT data,
to produce an invariant cross section for all electron candidates, Fig. 4.26. The
original 0.1GeV bins have been combined or rebinned in to the bins of Sec. 4.1
and then corrected as in Sec. 4.5. There are three data curves in this plot,
minimum bias, triggered and ”spliced”. Since the ERT and MB data match
in the overlap pT region a single curve is created by splicing the MB curve
and the ERT curve at pT = 2.2GeV , well above the trigger threshold. At this
point the errors are only statistical.

Figure 4.26: Inclusive invariant cross section for Run 6, re binned

The salient feature here is the kink in the curve at pT ≈ 6.5GeV . This is
point where a significant fraction of the π′s are defeating the RICH cut. This
can be seen more readily in Fig. 4.27. What’s plotted here is the raw yield,
dN
dpT

from ERT data, all eID cuts are applied. There are no other factors other
than a re binning to delineate the kink in the curve. The line is a FONLL
curve fit to Run 5[24] heavy flavor invariant cross section data that is reverse
engineered to be an inclusive yield.

Our assertion is that this background is dominated by π′s and that we can
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Figure 4.27: Inclusive Yield ERT Data plotted with a heavy flavor theory
prediction.

subtract the background using a technique that takes advantage of the energy
deposition characteristics of π′s.

70



Chapter 5

Background Subtraction at
High pT

5.1 Technique

The Cherenkov threshold momentum for π′s in CO2 gas at Standard Tem-
perature and Pressure is 4.625GeV. As π’s pass this momentum the π′s begin
to emit Cerenkov light and they begin to be indistinguishable from electrons in
the RICH. We exploit the characteristics of the energy deposition in the EMC
to formulate a background subtraction technique using the E/p distribution.

In Fig. 5.1 we see a typical E/p profile in a pT range below which the π′s
are a significant contributor. In other word, even though we are above the
Cherenkov threshold, the n1 ≥ 5 cut still removes most π′s. We can see a
clear distribution about the value of one.

Fig. 5.2 is now an E/p plot in a pT bin well above the π threshold. Electrons
are still centered about one but now we have a decaying continuum of hadrons
that extends into the region of the electrons.

There is also a rising curve to the left of the E/p profile, this is from a few
sources. The π’s that don’t shower in the EMC leave their energy as minimum
ionizing particles. This referred to as a MIP peak, this peak moves to the left
as one goes up in pT since the energy deposit of a MIP in our EMC is 250
MeV, independent of momentum. We then have the situation where the E
in E/p is constant and with increasing p, the MIP peak moves toward zero
and is not a factor. In addition there will be the decay electrons from the so
called ke3 decays of K± and K0

L, since they decay away from the interaction
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Figure 5.1: Typical E/p profile without hadron contamination

point they have a reconstructed pT that is higher than their real pT so E/p is
lower than one. There will also be electrons from photon conversions, these
will also have a high reconstructed pT , however many come from beam pipe
conversions, these will generally fall into the accepted E/p window. That is
why conversion γ’s are part of the cocktail of electron sources that will be
subtracted from the inclusive spectrum.

We can also see in Fig. 5.2 a graphic of the technique that we will employ
to remove the hadron background. We assume that the shape of the hadron
continuum, aside from the MIP peak, is independent of pT . The spectrum is
divided into two regions as shown in the figure and a ratio is formed of the
integral of Region II divided by Region I,

R =

∫ 1.2

0.8

[
E
p

]
π∫ 0.8

0.6

[
E
p

]
π

. (5.1)

Once Rπ is known the following equation can be used to subtract the π
background from the electron candidates,
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Figure 5.2: Significant hadron contamination

Ne =

∫ 1.2

0.8

[
E

p

]
all

−Rπ

∫ 0.8

0.6

[
E

p

]
all

. (5.2)

There are now three tasks set before us, demonstrating that Rπ is indeed
a viable concept and that we can accurately calculate it. Secondly, if this is
so then we must demonstrate that the only background in region I is indeed
π′s, and last, we must be able to prove that we can accurately model the
backgrounds.

5.2 Principle

An electromagnetic calorimeter is essentially a block of dense matter that
induces a particle to shower, to produce multiple secondary and tertiary par-
ticles, many of which are charged and can therefore create a signal that we
can read out. In the case of the lead glass (PbGl) calorimeter, the block
of material is also the sensitive medium. The lead induces the shower, the
charged particles emit Cherenkov light that passes through the clear glass to
a photomultiplier tube. In this case all of the available signal is accumulated.
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Figure 5.3: Cartoon of Longitudinal Development of a Hadronic Shower. The
fraction of deposited energy can vary widely

Figure 5.4: Showers can start anywhere

In the case of the lead scintillator (PbSc) calorimeter, a compromise is
implemented whereby plastic scintillator is interleaved with sheets of lead.
The amount of lead is equivalent to the PbGl, the finesse is to place enough
scintillator into the mix to sample enough of the energy as to not adversely
affect the resolution while at the same time keeping the longitudinal dimension
of the calorimeter manageable.

An electromagnetic shower is basically an impinging electron, or pair of
electrons from a converted impinging photon, ”bremsstrahlung’ing” thousands
of photons which then convert to e± pairs that either further bremsstrahlung
or are absorbed in the lead or simply fluoresce in the scintillator. Of course, in
the PbGl, the electrons also emit Cherenkov light while above the threshold.
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Figure 5.5: EMC response to 1 GeV/c ps π′s and electrons. Notice the profile
of the π energy distribution

One important concept is that particle multiplication peaks, by design, at
a longitudinal distance, weakly dependent on energy, about 1/3 the length of
any electromagnetic calorimeter. This called the shower max, at this point
≈ 80% of the shower energy has been deposited. Consequently the measured
energy is not particulary sensitive to the position that the shower starts. This
is a minor point for electromagnetic particles in an electromagnetic calorimeter
but becomes important in our discussion of π′s in the calorimeter.

A purely hadronic shower depends on processes with a much smaller cross
sections than of as electromagnetic shower. As such hadronic calorimeters
are much larger that electromagnetic calorimeters, both longitudinally and
radially. To get a sense of this we see that in Fig. 5.3 that, on average, the
shower max of a purely hadronic shower occurs after passage though 21 cm
of lead! The electromagnetic calorimeters of PHENIX represent 9cm of lead
in total, seemingly not nearly enough to sample a sufficient amount of the π′s
energy. Recall that we are studying E/p ≈ 1, so the particle in question needs
to deposit all of its energy to approach this value

The interactions of a hadronic shower are also considerably more varied
than in an electromagnetic shower, indeed there is such a widely varying elec-
tromagnetic component that there is a significant probability that all of a
showering hadron’s energy can be deposited in an EMC, as represented on the
right side of Fig. 5.3. At any given interaction of a π± and a nucleon a π0 can
be produced which will then shower electromagnetically
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Therefore, even though the longitudinal dimension of the EMC is con-
siderably smaller than the average hadronic shower max, the widely varying
electromagnetic character of the hadronic showers coupled with the short dis-
tance, that is logarithmically dependent on momentum, for the development
of shower max, the distribution profile of the energy deposition scaled by mo-
mentum should be a constant.

This can be seen in Fig. 5.5 where we test beam data for 1 GeV momen-
tum particle of three species. Even though this is an energy spectrum all of
the particles are of the same momentum, which is conveniently 1 GeV. As
expected, the electrons inhabit a gaussian about E/p = 1. The protons how
a low energy tail and a peak at E/p ≈ 0.6, this is because the protons don’t
shower at such a low momentum, the massive protons give their energy as ion-
ization, these are in the continuum as they are not behaving strictly as MIP’s.
Many of them make the transition to heavily ionizing particles, coming to a
rest in the absorber where they give up all all of their remaining energy in a
very short distance.

The most interesting curve in the plot is that of the π′s. We see a clear
MIP peak at E

p
= 0.250Gev

1GeV
= 0.250, we then see a smooth continuum from

the MIP peak to E/p ≈ 1.2. We have to demonstrate that the slope of the
continuum is constant as a function of pT . We will do this by demonstrating
that we can accurately model the PHENIX detector with our simulation and
that we can demonstrate an understanding of all background sources.

5.3 FastMC

Figure 5.6: RICH focal
plane in FastMC

As has already been demonstrated in sec. 3.3,
PISA does not duplicate the PHENIX response at
n1 ≥ 5. So we decided on alternative means to sim-
ulate the turn on curve for π’s in the RICH. Since
all other factors were in otherwise in hand it was de-
cided to write a simple simulation of the RICH and
the turn on of the n1 variable, we will refer to it as
the FastMC.

The first part of the FastMC was to recreate the
RICH focal plane that essentially consists of 50mm
diameter rings grouped as seen in Fig. 5.6, this in-
cludes a dead area about the circumference corre-
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sponding to a 2mm wall thickness. The next part is to propagate tracks to
this array in a realistic manner. As in previous simulations a list of generated
π’s is created, this list contains only momentum from 0.2-20.0GeV. To quasi-
simulate the variation of φ and η each generated π is given an impact point on
the array of Fig. 5.6. This impact is randomly varied about the central circle,
realistically a hexagonal shape would have proper but this added tremendous
additional work for limited gain. Any effect from varying rapidities and track
angle bend from the magnetic field will be absorbed in an added error factor
later.

Since this FastMC is completely independent of PISA at this point the
momentum resolution is infinitely precise. The smearing of the momentum is
done adhering to the results of Sec. 4.3.1, and smearing is done in α, the angle
between straight track and the particles actual track at the reference radius.
The difference here is that there no inherent resolution to add to. One first
determines αgenerated from pgenerated = 92/alphagenerated, this is then used as a
mean of a gaussian distribution centered at αgenerated with width

σsmear dist = αgenerated ∗
√

(0.116 ∗ p)2 + 0.112. (5.3)

We now have an ”αreconstructed” an α that would be produced by the real
detector. We then use αreconstructed to calculate preconstructed, this value is then
saved to make any histograms later. When a measured value is plotted vs. pT
in data it is, of course, always reconstructed pT . When calculating physical
effects such as the Cherenkov angle, Mother Nature only cares about the ”real”
momentum, here pgenerated.

Using pgenerated, βπ is calculated and then the Cherenkov angle. To deter-
mine the number of Cherenkov γ’s produced by any given π we generate a
random number from a Poissonian with a mean given by a rearrangement of
the Frank-Tamm formula Eq. 2.9,

dE

dx
=
q2

4π

∫
v>c/n(ω)

µ(ω)ω

(
1− c2

v2n2(ω)

)
dω. (5.4)

Which can be re arranged to the more practical form of the number of
photons generated of a particular frequency range in a particular medium
along a definite path length,

N350−500nm
γ = 390 ∗ sin2θC ∗ nCO2 ∗ l. (5.5)
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Figure 5.7: The number of Cherenkov γ’s as a function of momentum for π’s
and e±’s from Eq. 5.5 normalized to the mean value of n1 for electrons.

So now we have an ”impact point”, an angle and a path length [18] over
which the light propagates from the mirror to the focal plane. We can now
calculate the radius of the ring formed by the emitted γ’s with an added term
for the imperfection of the mirrors. This is quoted as 2.5mm so a random
number is generated from a gaussian distribution centered at 0.0 and a σ of
2.5mm.

The generated Cherenkov photons are then randomly distributed about
the ring and propagated to the focal plane. A circular mask of radius 11cm
is placed at the focal plane centered at the impact point just as in the real
RICH, this is how the n1 variable is determined. Any γ that impacts an active
area of a phototube is added to a tally for that tube. The number of tubes
that have at least one hit and are within the mask are counted, this is n1.

All of these steps are repeated for a set of generated electrons as well. To
overcome the intricacies of folding in the quantum efficiency of the phototubes
as well as other factors a simple but well motivated normalization technique
was used. First, the plateau, for electrons, of the Frank-Tamm plot, Fig 5.7
is normalized to one. The equation in code that determines the number of
Cherenkov γ’s as described above has an extra multiplicative factor applied to
it. This factor was varied from 7 to 14 for a series of runs of the FastMC.

Since the Frank-Tamm plot plateaus at 0.250GeV and our lowest pT bin
is 0.200GeV an n1 distribution covering all pT ’s was made for each value of
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Figure 5.8: n1 plotted as a function of mean number of Cerenkov γ′s generated.

Cherenkov mean. The mean of each distribution was determined and plotted
as a function of Cherenkov mean, Fig. 5.8.

In data n1 distributions were made for MB and ERT data in 0.20GeV pT
bins, the means of the distributions below the π threshold were examined and
a value of 5.30 was chosen as the mean n1 of electrons in data. A horizontal
line is drawn through this value in Fig. 5.8, a vertical line is dropped from the
point where the horizontal line crosses the plotted points. From this we chose
the value of 10 for the mean number of Cherenkov photons generated by an
electron in the RICH. This was then used the normalize the Frank-Tamm plot
plateau to 10, scaling the π curve by the same amount.

We can see the results of this in Fig. 5.9 where the n1 distributions of data
and FastMC are plotted, each distribution is normalized to integrate to a value
of 1.

5.4 Constructing an Overall Fit Function

We constructed a fit function with four elements; electrons, electrons from
γ conversions, π’s and electrons from so called Ke3 Kaon decays. The species
were generated in simulation and functional form to fit the E/p profile was
determined for each, these functions are combined and fit to the E/p profiles of
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Figure 5.9: n1 plots from data and FastMC, with Cherenkov mean set to 10
in FastMC.

data. In this fit the parameters from the individual element fits are held fixed,
each element is weighted with a normalization constant as the free parameters.
Following is a description of the determination of the function for each element.

5.4.1 Electrons

Just as was done in Sec. 4.3.1 an E/p profile is created for each of our
standard 20 pT bins from simulation. We had to take into account an effect of
the recalibrators for energy and momentum in that a somewhat non-gaussian
shape is created for the electron E/p distribution. Even though the momentum
is smeared symmetrically, the momentum is in the denominator of E/p and
this will have a ”hyperbolic” effect on E/p. Because of this a fit function
composed of two gaussians was used. Fig. 5.10 is an example of these fits, these
are the last few bins and clearly show the non-gaussian tail caused by the finite
momentum resolution. All 20 E/p profile fits can be seen in Appendix B.2
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Figure 5.10: Two gaussian fit to simulated electrons, these last few bins clearly
show the tail in E/p

5.4.2 γ Conversion Electrons

To simulate conversions one can certainly generate a sample of γ’s and
propagate them through PISA. However, since PHENIX is designed with the
minimization of conversion material in mind, and of course, PISA reflects this,
one would need to generate orders of magnitude larger amounts of γ’s as the
other species. The cost in cpu time becomes prohibitive so we developed an
alternative technique. A sample of electrons was generated as in the past, this
time with an added dimension, radial distance from the beam axis. A random
number is generated with a flat probability distribution from 0-200cm (the
face of the DCH) this is combined with the generated z coordinate as well as
polar and azimuthal angles to generate a ”conversion” vertex for the electron.
The momentum vector is the same as if the electron had originated along the
z axis.

There are then three material regions that the conversion vertex may be,
the vacuum of the beam pipe, the beam pipe itself or the air between the beam
pipe and the face of the DCH. For each of these regions a conversion weight
is calculated based ont he radiation length of the material in question taken
from the PDG booklet.[28]
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X0 ρ λ
material radiation length density attenuation length
vacuum ∞ 0 ∞

Be 36.62 gm
cm2 1.2× 10−5 g

cm3 3.05× 106 cm
air 65.16 gm

cm2 1.85 g
cm3 35.22 cm

Table 5.1: Conversion Material Parameters

Where,

λ = X0

ρ
,

is the attenuation length.

The fraction of γ’s converting after traversing a distance x of any material
is

fraction converting = 7
9
x
λ
.

We divide the path within a material into steps, 0.1mm steps in the Be
beam pipe and 1mm steps in the air. We can then borrow the compound
interest formula of economics to calculate the number of conversions

fraction converting = (1− 7
9
step size

λ
)# steps.

This formula is then used to weight the electrons according to where they
convert. Four typical E/p profiles are plotted in Fig 5.11, in this case the fit
function is six gaussians. Since we extract no information using this fit other
than the shape of the profile the six gaussian function presents no issues. All
of the E/p profiles can be seen in Appendix B.3.
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Figure 5.11: Six gaussian fit to simulated γ conversions.

5.4.3 π’s

A sample of π± was generated for PISA with 0 < pT <= 20 flat in pT ,
0 < φ <= 2π, |η| < 0.50 and |z| < 30cm. To create a ”real world” sample of
π’s to work with, the Hagedorn function used to fit published π data was used
as a weighting function when filling all histograms.

Once again an E/p profile is created for each pT bin as seen in Figure 5.12.
In this case a simple Gaussian fit to a peak was not possible. The fit function
used is created of four Gaussians, one floats but is constrained to a window
about the MIP peak. The other three have their µ’s set at three points along
E/p, 0.2, 0.5 and 0.90, these are also allowed to vary ±25%. A set of these
fits can be seen in Figure 5.12, once again all of the fit parameters are saved
for the final fit to data.
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Figure 5.12: Fit to π E/p profiles

As with the conversions, since we extract no information using this fit other
than the shape of the profile the six gaussian function presents no issues. All
of the E/p profiles can be seen in Appendix B.4.

5.4.4 Ke3

K± and K0
L can decay in the region between the interaction point and the

face of the drift chamber. The decays that can contaminate out measurement
are called Ke3;

K+ → π0e+ν

K− → π0e−ν̄

K0
L → π±e∓ν

The resulting decay electrons can pass all eID cuts with the notable ex-
ception in their behavior that the E/p will not be centered at one. The re-
constructed pT will be higher by a factor proportional to the fraction of the
distance covered by the kaon before decaying. The reconstruction algorithm
of the Drift Chamber assumes a B · dl starting at the interaction point, the
tracks originating closer to the drift chamber will have a smaller sagitta and
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hence be reconstructed momentum higher than the actual momentum.

These electrons will still deposit all of their energy into the Electromagnetic
Calorimeter (EMC). E/p plots are made as a function of reconstructed pT , so
regardless of the parent momentum, any particular E/p distribution will have
a sample of electrons of the same (mis)-reconstructed pT with a range of E.
As we go above the highest real pT the spread in E (and E/p) narrows since
now we will be looking at a sample of Ke3 electrons with only a small spread
of actual pT .

A Ke3 monte carlo was run to investigate the contribution of Ke3 to the
background in the region of interest. The three kaon species were generated
in equal proportion, 0 < φ <= 2π, |η| < 0.5, |z| < 30cm, the momentum
given by an mT scaled Hagedorn function and decay lengths dictated by the
cτ of the particular Kaon. The decay products were than originated from these
decay points and given a momentum vector dictated by the parent momentum
vector, momentum sharing and boost.

This information is then propagated through PISA to produce simulated
Data Storage Tapes (simDSTs), which can be treated as any data file. For
each of our standard pT bins an E/p profile is plotted, this is seen in Figure
5.13. All profiles are in Appendix B.5.
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Figure 5.13: Ke3 E/p profiles

The figure demonstrates that as we cross the pion threshold the Ke3 con-
tribution to the background is insignificant. In each of the profiles, just as
with the electron profiles, a two gaussian fit is made, and, once again, the set
of parameters for each bin is saved to be used in the overall fit function to the
data.

5.4.5 Final Fit to Data

The final function is a sum of the three elements, the parameters deter-
mined in the previous fits are retained. The normalization constant of each fit
is allowed to float however so that the final fit is essentially a weighted sum of
the elements. The fit will test whether or not the function is constructed of
the proper elements.
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Figure 5.14: Rπ determined from simulation with no eID cuts

All of the pT bin plots can be seen in appendix B.6

5.5 Yield Fraction

Once it was established that a good understanding of the backgrounds
was in hand a determination of Rπ was made using E/p profiles from PISA,
Fig. 5.14, the value of 0.4 was chosen. The background subtraction was to be
implemented as a fractional yield of electrons in the E/p window of 0.8-1.2.
The yield fraction was calculated for each pT bin and applied to the inclusive
invariant spectrum.

The yield fraction is defined as,

Yf =

∫ 1.2

0.8

[
E
p

]
all
−Rπ

∫ 0.8

0.6

[
E
p

]
all∫ 1.2

0.8

[
E
p

]
all

. (5.6)
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Which is simply,

Yf =
Ne

Ne +Nπ

(5.7a)

=
Ne�Ne

Ne�Ne +Nπ�Ne

. (5.7b)

We focus on the second term in the denominator of Eq. 5.7b,

Nπ

Ne

=
π

e

∫ 1.2

0.8

[
E
p

]
π∫ 2.0

0.0

[
E
p

]
π

fπ(n1 ≥ 5)

fe(n1 ≥ 5)
. (5.8)

There are three terms in Eq. 5.8, the first is π/e, the ratio of π’s to e± as
presented to us by mother nature. This determined by fitting the most recent
π data from PHENIX [30] with a Hagedorn function as in section 6.1.1. For
electrons a FONLL function from PHENIX single electron paper [24] was fit
with a free normalization constant, Fig 5.15. This is now only for the electrons
from heavy flavor. However we can reverse engineer an inclusive function by
using the ratio of non heavy flavor to heavy flavor electrons from Run 5[24].
First we recognize that the inclusive spectrum can be written as;

d3σ

dp3
inclusive

=
d3σ

dp3
HF

∗ HF

nonHF
+
d3σ

dp3
HF

, (5.9a)

rearranging (5.9b)

=
d3σ

dp3
HF

∗ (1 +
HF

nonHF
). (5.9c)

In Fig. 5.16 is a fit to the ratio nonHF
HF

. This fit is inverted and, along with
the fit of Fig 5.15, is plugged into Eq. 5.9 to get a final inclusive invariant cross
section function, Fig.5.17 The two functions are then divided, in Fig 5.18 this
is plotted as points in the 0.1GeV bins in which all initial pT spectra are filled.

The second term of Eq. 5.8 is the fraction of π’s in the window 0.8 ≤ E/p <
1.2, which is taken from simulation.

The third term of Eq. 5.8 is the fraction of electrons passing the n1 cut
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Figure 5.15: Fits e+/− published data.

Figure 5.16: Fits published non heavy flavor to heavy flavor ratio.
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Figure 5.17: Fit functions for π’s and inclusive e±’s.

Figure 5.18: Division of fits, plotted in 0.01 GeV bins.
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Figure 5.19: Final calculation of the yield fraction in simulation compared to
data.

divided by the fraction of π’s passing the same cut.

Once all of the factors were identified, the FastMC, along with the proper
calibration of E and p, were used to produce the yield fraction plot again,
Fig. 5.19, where we see a much better description of the data by the simulation.
To use the FastMC output in PISA two sets of ”turn on” factors for n1 = 3
and 5. Each set of 200 values corresponded to 200 pT bins of 0.10GeV width
as this is the standard bin width of raw histograms used in this analysis. Each
value is the fraction of π’s that pass the n1 ≥ 3(5) cut. These sets were used
as a weight factor when filling histograms in PISA instead of the PISA RICH
response.

5.6 Determination of Rπ Using Reverse prob

Cut

After having addressed the issues with PISA, a study of Rπ was done in
PISA and Run 5 CuCu 200GeV, using a reverse prob cut similar to other
PHENIX work [31]. The CuCu was chosen because of expected higher pion
production than in pp.

93



Figure 5.20: Rπ from simulation and CuCu data calculated with RICH ignored
and various prob cuts

An enhanced sample of pions was created by using two reverse prob cuts of
prob < 0.10 and prob < 0.01 while ignoring the RICH. These cuts will exclude
showers of a completely electromagnetic nature but should still retain π’s that
start showering hadronically but have one or more π0’s created in the shower.
Such a hadronic shower will have the larger radius that will pass the prob
cut but still deposit a larger fraction of the π’s energy than a purely hadronic
shower.

The quality cut (cf Sec. 3.3) was retained as it’s best to work with high
quality tracks. The track matching cut to the EMC was reduced to ≤ 1.5σ a
further matching cut for the PC3 (directly in front of the EMC), constructed
exactly as that of the EMC, was added and set to ≤ 1.5σ. The purpose of
these cuts was to eliminate electrons from π± decays. In the beginning of the
study an attempt was made to create a sample of π’s in data using a reverse
n1 cut and no prob cut, this was not successful but the tight matching were
never removed.

One can see in Fig. 5.20 that Rπ remains fairly constant over the pT range
3 < pT < 9GeV in data and 3 < pT < 15GeV in MC and that MC and data
track each other quite nicely. Even at low pT where one assumes that the rise
in Rπ is due to ionization loss for π’s rising rapidly.

The Rπ that one extracts from this plot is somewhat lower than in Fig. 5.14
due to the reverse prob cut. Prob is a measure of the electromagnetic charac-
ter of a shower. A reverse prob cut eliminates the electrons but it also tends
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Figure 5.21: Rπ from simulation and CuCu data calculated with RICH n1 ≥ 3
and various prob cuts

Figure 5.22: Rπ from simulation with all eID cuts with a third degree polyno-
mial fit
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to eliminate the pions that shower completely electromagnetically and, coin-
cidentally, populate the hi window preferentially, hence the lower Rπ value in
this plot.

Of equal importance is the observation that even when one cuts down on
the number of π’s showering electromagnetically, the remaining hadron energy
loss mechanisms in the EMC are still variable enough, and that variability is
still insensitive enough to pT , to keep Rπ constant.

An n1 ≥ 3 was added and the results are plotted in Fig. 5.21. The MC
points are at zero until the RICH starts firing but the data still show counts.
These are most likely not π’s and not statistically significant compared to π’s
as they are not enough to cause the data and MC to diverge at low pT on
Fig. 5.20.

Once the Cherenkov threshold begins to be crossed we see a jump in Rπ

that then begins to decay. These π’s have a reconstructed pT that is LOWER
than their real pT , usually these are balanced by the π’s of the opposite sense
but they are being excluded for the moment as the the threshold is crossed.
This happens because of the finite momentum resolution of the real DCH. The
feature of note here is that the simulated DCH is behaving exactly the same
way, demonstrating that our momentum recalibrator and the FastMC results
are working.

Now that all of the pieces are finally assembled and tested, a final run of
π’s through PISA was made to determine Rπ. In this case all of the eID cuts
that are used in the analysis are used to ”select” π’s. The plot of the final Rπ

can be seen in Fig. 5.22, with a third degree polynomial fit. It is this fit that
will be used to subtract he π contamination for the final spectrum.

5.7 Comparison Subtraction Techniques

We have now developed three methods to subtract the hadronic background
of our measurement of electrons. In the yield fraction technique we calculated
the fraction of electrons in the 0.8 ≤ E/p < 1.2 window. The overall fit
function was successfully constructed of the elements that would comprise our
raw measured signal, we used the fit to π’s to subtract them from the raw
yield. Then, finally, the ratio method using Rπ which was finally chosen as
the preferred subtraction technique.

Throughout the process, refinements were made to PISA such as the mo-
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mentum recalibrator, the turn on behavior of π’s in the RICH and weighting
functions for the various species derived from up to date data, most particu-
larly from PHENIX if possible.

Figure 5.23: Four different methods of determining the heavy flavor cross
section

Also included in the plot is a set of points labeled ”π absolute normaliza-
tion”. In this curve the background π’s were created in in simulation with
a weighting function, the modified Hagedorn Eq. 6.1. This function is fit to
π data in a range that encompasses the range of our measurement, Fig. 6.1,
Sec. 6.1.1, so it is quite reliable. (In fact, all π simulations use this weighting
function.) After being run through PISA the generated π’s are treated just as
any data instead of the floating normalization as in the background function
creation. The resulting invariant cross section of simulated π’s was then sub-
tracted from the inclusive invariant cross section measurement as well as the
cocktail to arrive at the curve in the plot.

We know from Fig. 5.18 that the ratio of pions to electrons in pp collisions
at 200 GeV is ≈ 800 − 1000 at high pT . We calculated in simulation that
the number of pions will be reduced by our eID cuts by a factor 0f 103. The
black line in Fig. 5.24 was created by multiplying the curve of Fig 5.18 by the
fraction of π’s passing all eID cuts calculated in simulation.

We compare this to data in Fig. 5.24 in which the ratio of the π yield
to electron yield for each of the four techniques is plotted. The curves start
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from zero at the π threshold and plateau at high pT . This is as expected
as the number of Cherenkov γ’s from π’s also plateaus and the ratio of the
invariant cross sections of π’s to electrons, Fig. 5.18, is reasonably flat in this
region. The plateau is at ≈ 1 and since this plot is the inverse of the signal to
background ratio, this is also ≈ 1. This means that any systematic error on the
background estimation is translated directly to the final result. Put another
way, the larger is π/e the greater is the effect of any error in the determination
of the background.

Figure 5.24: π/e ratio of the four different methods of determining the heavy
flavor cross section

The final decision was to use the Rπ subtraction technique as originally
planned. It has the subjective advantage of being more intuitive. On the
more objective level, using Rπ avoids the subtlety of the proper time to apply
the subtraction as it is a ratio. Also, the larger errors that would be the
price of using a simple subtraction are ”pushed” into the uncertainty of of the
determination of Rπ itself.

5.8 Systematic Error of Rπ

To make a systematic error determination for Rπ we plot Rdataπ

RMC
π

with the
conditions that n1 is ignored and the two reverse prob cuts, prob < 0.10 &
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prob < 0.01. This is plotted in Fig. 5.25.

Figure 5.25: Ratio of Rπ’s, the solid line is at 1 and the dashed lines are at
±25%

We will make the conservative estimate that since most all points up to 10
GeV fit within a band from 0.75-1.00 that the systematic error on Rπ is 25%.
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Chapter 6

Final Spectrum

6.1 Cocktail Calculation

The PHENIX detector is very good at identifying and measuring the prop-
erties of electrons such as energy and momentum. What PHENIX does not
do well is identifying the sources of the electrons. The EXODUS[32, 33] event
generator and decay machine was developed to subtract off the electrons from
non heavy flavor decays from an inclusive spectrum of all electrons. The sum
of all the undesired electrons is called, by PHENIX, the cocktail. The electron
sources in the cocktail are of two types, photonic and non-photonic.

We will describe the inclusion of the following photonic sources;

• Dalitz decays of light neutral mesons: π0, η, ω, η
′
, φ.

• Conversions of γ’s from decays of these mesons.

• Conversion of direct γ’s, e.g. from quark-gluon Compton scattering.

The non-photonic sources are;

• Di-electron decays of light vector mesons: ρ, ω, φ.

• Di-electron decays of the vector mesons J/Ψ and Υ.

• Weak kaon decays, known as Ke3 decays.

• Virtual direct γ’s from the initial hard scattering processes.
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decay branching ratio
π0 → γe+e− 1.198x10−2

η → γe+e− 0.5x10−2

η
′ → γe+e− 5.6x10−4

ρ→ e+e− 4.44x10−5

ω → e+e− 7.15x10−5

ω → π0e+e− 5.9x10−4

φ→ e+e− 3.09x10−4

φ→ ηe+e− 1.3x10−4

J/Ψ→ e+e− 5.94x10−2

Υ→ e+e− 2.38x10−2

K± → π0e∓νe 5.08x10−2

K0
L → π±e∓νe 40.55x10−2

Table 6.1: Decays channels in EXODUS

Particle properties, e.g. masses and branching ratios come from the PDG
Handbook [28].

Each of the parent particles in Tab. 6.1 has a pT distribution from which
they are generated. These parent distributions are set by the user, the param-
eterizations will be detailed in Sec. 6.1.1. The normalization of particle yields
is tied to the π0 and is given by dNπ0/dy a user input. The relative normaliza-
tion of the other mesons the ratio (dNmeson/dy)/(dNπ0/dy) is required to be
input by the user. The decay machine in EXODUS has generic algorithms for
two- and three-body decays as well as Dalitz decays. The decay machine fills
pT spectra of the decay products. The Dalitz decay algorithm uses the electron
pair mass distributions in [34], it also includes electromagnetic form factors
from [35] and it takes into account the electrons are not emitted isotropically
from the γ in its rest frame but follows a (1 + cos2 θ) distribution.

The electron cocktail for pp collisions at
√
s = 200 GeV in this analysis is

an update of the corresponding cocktails generated for Run-5 [24]. Here we will
focus on documenting the updated cocktail input, the resulting cocktail, and
the corresponding systematic error. We assume that all mesons have a constant
rapidity density in one unit of rapidity centered about zero and a homogeneous
distribution in azimuthal angle. Transverse momentum distributions are based
on measurements in PHENIX where possible.
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6.1.1 Cocktail Input

π’s

The most important cocktail input is the invariant differential cross section
of π′s. This is obtained by a simultaneous fit to the charged pion spectra
from [30] and the neutral pion spectrum from [36] with a modified Hagedorn
parametrization;

E
d3σ

dp3
= A

(
e−(apT+bp2T )pT

p0

)−1

. (6.1)

We can see this fit in Fig. 6.1 with the fit parameters. The χ2/ndf of 0.519
indicates a good fit. Further evidence of this is seen in Fig. 6.2 where the
data points are divided by the fit. This ratio was itself fit with a zeroth order
polynomial with a result of one. The results of the Hagedorn fit are compiled
in Table 6.1.1, we can then calculate the rapidity density, dN/dy, using the
Hagedorn function. Since the Hagedorn is fit to an invariant cross section the
result is an invariant cross section which can be written as,

E
d3σ

dp3
=

1

π

1

2

1

pT
σinel

dN

dydpT
. (6.2)

We then solve for, (6.3)

dN

dydpT
= 2πpT

1

σinel
E
d3σ

dp3
, (6.4)

then integrate to get (6.5)

dN

dy
= 2π

1

σinel

∫ ∞
0

pTE
d3σ

dp3
(6.6)

parameter pp 200 GeV
dN
dy

1.1346

A[mb GeV −2c3] 377± 60

a
[(

GeV
c

)−1
]

0.356± 0.014

b
[(

GeV
c

)−2
]

0.068± 0.019

p
[
GeV
c

]
0.70± 0.02

n 8.25± 0.04
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Figure 6.1: Hagedorn fit to combined neutral and charged π’s

Figure 6.2: Measured combined neutral and charged π’s spectrum divided by
Hagedorn fit. cf. 6.1
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Figure 6.3: Hagedorn fit, with mT scaling, to various meson species

Other Mesons

For all other mesons we replace pT in Eq.6.1 with
√
m2 −m2

π + (pT/c)2,
this is called mT scaling. The mT scaled Hagedorn is then compared to the
differential invariant cross section for each meson species with all parameters
held constant, Fig. 6.3. The alignments are not quite right so each spectrum
is divided the appropriately mT scaled Hagedorn function, Fig. 6.4. A zeroth
order polynomial is fit to each ratio, the result is then used as a normalization
constant for the mT scaled Hagedorn for each species and re plotted. We now
see that the fits are quite good, Fig 6.5.

In order to extract the meson yield we integrate the fits over all pT to obtain
dN/dy using Eq. 6.6. The input to EXODUS is (dN

dy
)meson/(

dN
dy

)π. Results,
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Figure 6.4: Cross sections divided by mT scaled Hagedorn

dN
dy
|y=0 relative error meson/π data used

p + p
π 1.135 10% 1.0 PHENIX [30], [36]
η 9.26 x 10−2 3.28% 8.16 x 10−2 PHENIX [37]
ρ 8.95 x 10−2 30% 8.81 x 10−2 [38]
ω 6.97 x 10−2 5.76% 6.14 x 10−2 PHENIX [39] [40]
φ 7.99 x 10−3 8.21% 7.04 x 10−3 PHENIX [40]
η′ 1.20 x 10−2 7.63% 1.06 x 10−2 PHENIX [41]
J/ψ 1.716x 10−5 3.13% 1.51 x 10−5 PHENIX [42]
Υ 1.1 x 10−7 50% 1.10 x 10−7 PHENIX [43] [44]
ψ′ 2.5 x 10−6 30% 2.46 x 10−6 [45]
K 1.14 x 10−1 50% 1.00 x 10−1 PHENIX [46]

Table 6.2: meson rapidity densities used in our meson decay generator.
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Figure 6.5: Corrected mT scaled Hagedorn, compared to various meson species
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uncertainties, and references to data are given in Table 6.2 The ψ′ is determined
by the ratio σψ′/σJ/ψ = 0.14 ± 0.03 [45]. To include the Υ, the ratio of
dσΥ/dy = 5.0 ± 1.8nb [43] to B.R.dσJ/ψ/dy = 45.3 ± 1.0(stat) ± 5.4(sys) ±
4.5(global)nb [44] with B.R.(J/ψ → e+e−) = 5.94% [28]. For the ρ meson we
assume σρ/σω = 1.15± 0.15, consistent with values found in jet fragmentation
[38].

Electrons from Conversions

The contribution of photon conversions to the electrons in the cocktail
depends on the configuration of the detector. These conversions are not ex-
plicitly implemented in EXODUS, the pT spectra of conversion electrons are
very similar to the spectra of electrons from Dalitz decays. A simulation of
π0’s is used to determine the ratio of electrons from conversions of photons
from π0 → γγ decays to electrons from π0 → γe+e− (Dalitz) decays with the
detector in the Run 6 configuration. This was determined to be 0.429. The
other meson Dalitz decays are scaled properly account for the fact that the
branching ratio for the Dalitz decay relative to the two photon decay grows
slightly with increasing parent meson mass.

Kaon Decays: Ke3

K± and K0
L can decay in the region between the interaction point and the

face of the drift chamber. The decays that can contaminate out measurement
are called Ke3;

K+ → π0e+ν,

K− → π0e−ν̄,

K0
L → π±e∓ν.

The contribution from Ke3 decays is shown to be negligible in Sec: 5, con-
sequently the only change made to the present cocktail was to update the
meson/pion ratio for kaons.

Direct Radiation

Contributions to the cocktail from virtual direct photons and from the
conversion of real direct photons are derived from the measured real direct
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photon spectra as published in [3]. There are two contributions to the inclusive
electron spectra from direct radiation of photons.

• Conversion of direct real photons, e.g. from quark-gluon Compton scat-
tering.

• Direct virtual photons γ∗ → e+e−.

Once again the relationship between these two is about the same as for
Dalitz decays of light mesons and the corresponding two photon decays. So
we have a real or direct photon (π0 → γγ) or a virtual photon (π0 → γe+e−).
Because of this an imaginary particle called a ”direct pion” was implemented
as a parent particle for these photons. The direct pion is defined as a neutral
pion with an invariant pT spectrum and normalization chosen such that the
spectrum of decay photons from the two photon decay is matched to the
spectrum of measured direct photons.

We start with an invariant pT spectrum from the latest direct photon
PHENIX data [3]. EXODUS was used to produce a ratio of pions divided
by all photons from pions, Fig. 6.6. This ratio was used to scale up the data
points to a direct pion spectrum.

The resulting direct pion spectrum is then fit with,

E
d3σ

dp3
=

p0(
e−p3pT−p4p

2
T + pT

p1

)p2 , (6.7)

the EXODUS weighting function for direct pions, as seen in Fig. 6.7. The
parameters of the fit are then put into EXODUS. By construction, the Dalitz
electron spectrum of the direct pion would be identical to the spectrum of
electrons from direct virtual photons if the ratio between Dalitz and conversion
electrons would be the same for (true) pion and for direct radiation. This
is not the case. The virtual photon mass, in principle, is not limited and,
therefore, we have implemented a relative normalization between ”Dalitz” and
”conversion” contributions from direct radiation that increases with pT of the
parent virtual direct photon,

Relative Norm. = 0.255

 log
(
ppairT

0.547

)
log
(

0.547
0.135

)
 . (6.8)
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Figure 6.6: Ratio of π invariant spectrum to the invariant spectrum of all π
decay γ’s.

The normalization of the direct pion is accomplished by comparing the
direct photon output of EXODUS to data, Fig. 6.7, the normalization constant
given to EXODUS is adjusted until the direct photon output matches data. A
ratio of the direct photon data to direct photons from EXODUS is plotted in
Fig. 6.9, the zeroth order polynomial fit yields a value of one.

6.1.2 Systematic Error on Cocktail

To calculate the systematic error of the cocktail each input element is
separately varied by its systematic error. Each element will cause a fractional
change in the final cocktail spectrum. These fractional changes are added in
quadrature to produce the total relative error of the cocktail.

The following systematic errors are assigned to the various inputs and the
resulting in upper and lower systematic errors on the cocktail are shown in
Fig. 6.11:

• Pion spectrum (black curves): obtained via full cocktail calculations
using pion spectra moved up (down) by the systematic uncertainty of
the pion spectrum as input.

• Meson to pion ratios: the sys. uncertainties are listed in Table6.2. Since
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Figure 6.7: Direct photon data, blue(lower) triangles. The red(lower) triangles
are this same data scaled by π/γ ratio to represent the direct pions. The black
line is the fit whose parameters are entered into EXODUS.

Figure 6.8: Direct γ data from [3] plotted with the various γ spectra from
EXODUS.
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Figure 6.9: Ratio of direct γ data from [3] to direct γ from EXODUS.

Figure 6.10: The final cocktail
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Figure 6.11: Individual contributions to the cocktail systematic error. The
total error is depicted by the data points which are shown together with a fit

the contributions from all other mesons are much smaller than the con-
tribution from η decay (red curve) the resulting systematic uncertainties
are tiny (< 1%) and, therefore, almost invisible as isolated curves in
Fig. 6.11.

• Conversion material in the aperture (light blue curves in Fig. 6.11): 10
% systematic error (pT independent).

• Ke3 decay (green curves in Fig. 6.11): 50 % systematic error (relevant
only at low pT ).

• Direct radiation (blue curves in Fig. 6.11):obtained from the systematic
error quoted for the direct photon measurement.

We show only the upper systematics as they are symmetric with the lower.
The points in Fig. 6.11 are a quadratic sum of the five curves. The thick black
line is a fit to the points using,

sys.error[%] = p0 ∗ exp(p1 ∗ pT ) + p2 + p3 ∗ pT + p4 ∗ p2
T + p5 ∗ p2

T . (6.9)

Equation 6.9 with the parameters in Fig. 6.12 is then used to calculate the
relative systematic error of the cocktail.
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Figure 6.12: Same as Fig. 6.11, now showing fit parameters

6.2 Systematic Errors

The error bars so far have been strictly statistical. We now have to add
the errors introduced by our technique and the detector, the systematic errors.
The source of the systematic errors, their assigned values, and the explanations
are as follows.

1. Absolute normalization

• BBC cross section (9.6%) Sec. 4.2

• BBC bias εbias (2.7%)

• Total normalization (10.0%) This is the quadratic sum of the
two items above.

2. Common part of the analysis

• Geometrical Acceptance (9.86%) Sec. 4.3

• eID

– E/p cut efficiency (variable) Sec. 4.3.1

– RICH eID cut efficiency (0.26%
⊕

0.40% = 0.48%) Sec. 4.3.2
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– EMC matching efficiency (0.53%)

– prob cut efficiency (0.51%)

3. Rpi determination (25%) Above π threshold in RICH. See 5.6

4. Trigger Correction. (3%) See Sec. 4.4.1

5. Cocktail (variable) See Sec. 6.1

The systematic errors given above are propagated to the Final Heavy flavor
electron cross section and then added in quadrature. For example, the com-
ponents of item 2, (the common part of analysis), added in quadrature and
contributed to the inclusive electron differential cross section. In the cocktail
analysis, the quadratic sum of the inclusive cross section and the cocktail error
is the error of heavy flavor electron cross section.

6.3 Heavy Flavor Spectrum

In Sec. 4.6 we produced the final inclusive invariant cross section of electron
candidates as there is still an obvious contamination at pT > 6.0GeV. These
need to be subtracted out and the means to to this were described in Chap. 5.
Once again we will subtract the background using,

Ne =

∫ 1.2

0.8

[
E

p

]
all

−Rπ

∫ 0.8

0.6

[
E

p

]
all

. (6.10)

In addition, our goal is an invariant cross section spectrum for electrons
from heavy flavor decays. The inclusive spectrum has electrons from a va-
riety of sources that PHENIX (only at present!) does not have the ability
to discriminate. These electrons are subtracted using the cocktail of electron
sources as described in Sec. 6.1.

Throughout the analysis chain the data are kept in three dimensional ar-
rays, the dimensions being pT , E/p and n1. In this way one can choose the
n1 cut at will and also plot either the E/p profiles per pT bin or the pT spec-
trum itself projecting out just the high E/p window. The other key advantage
is that all three dimensions are scaled by the same factors, trigger efficiency
(where applicable), BBC efficiency, acceptance correction etc. with this and
the fact that Rπ is dimensionless the subtraction of Eq. 6.10 can be performed
when the data are in units of invariant cross section.
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Figure 6.13: The inclusive spectrum with the cocktail and two different sub-
tracted spectra (see text)

In Fig 6.13 we now see the inclusive spectrum plotted with the cocktail to
get a sense of their relative magnitudes. In the legend are the terms ”1D” and
”2D”, these are used to distinguish two methods to produce the spectra. In
the 1D case the inclusive pT spectrum is a one dimensional histogram that is
filled in the analysis code using all eID cuts including E/p. In this case we
constructed the yield fraction as a multiplicative factor to remove the hadronic
background.

In the 2D case the final plot is made from the original three dimensional
histogram as mentioned above. The n1 axis is collapsed as a projection to a
two dimensional histogram of pT and E/p. One can then easily produce the
yields in the Hi and Lo windows and use Rπ. In this way all corrections are
factorable and the Rπ subtraction is applied as an arithmetic subtraction that
can commute with the cocktail subtraction. In addition we eliminate the need
to propagate the error of the yield fraction. We are left with the statistical
error of the two windows and the systematic error of Rpi.

The reason to include the two methods in Fig 6.13 was to demonstrate the
2D method produced the 1D method up to this point. The red points are the
cocktail subtracted 1D points, they also have had their hadronic background
subtracted using the yield fraction multiplicative factor. The black circles are
the 2D cocktail subtracted points there is no background subtraction as yet,
the contrast of the red points and black circles shows the degree of contami-
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Figure 6.14: Heavy flavor invariant cross section for Run 6 with systematic
errors

nation.

So at the end we have for the final systematic error calculation

Systotal(%) = SysCocktail
⊕

SysCommon(10%)
⊕

SysRπ(25%). (6.11)

The systematic error is added as colored boxes about each point in the
spectrum, Fig. 6.14.
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Chapter 7

Implications for Heavy Flavor
Production

7.1 Comparison to previously published PHENIX

data

The spectrum of Fig. 7.1 was plotted alongside previous PHENIX data[31],
to check for consistency a ratio was made of the two spectra. Note that the
published data ends at 8.5GeV and that our measurement extends to 14.5GeV.
To make a comparison on a linear scale the two data sets of Fig. 7.1 are divided
by a FONLL shape from [47] that is scaled to the published data.

In Fig.7.2 we see three panels. The top panel is the ratio of published data
to the scaled FONLL shape, to see that it is scaled properly. The middle panel
shows our data divided by the FONLL shape. The bottom panel is now our
data divided by both the published data points and the FONLL shape. All
statistical and systematic errors are included, no error is assigned to the fit of
the top panel. We see that the ratio in the bottom panel is consistent with
one within the errors.

7.2 Final Invariant Cross Section

In Fig.7.3 we see the final spectra with background and cocktail subtraction
as well as all errors both statistical and systematic. The numbers correspond-
ing to the points in the figure can be found in Table A.7.
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Figure 7.1: Heavy flavor invariant cross section for Run 6 and previous
PHENIX data.

Also on the plot are theory predictions for charm and bottom cross section
as well as the sum with upper and lower limits. As was done for Run 5[24] we
use the FONLL predictions of the charm and bottom cross sections calculated
by Cacciari, Nason and Vogt[47]. The bottom panel of Fig. 7.3 is a division of
the data by the theoretical prediction including the upper and lower limits.

In Fig. 7.4 the published data has been added. The final element of Fig. 7.4
comes from a theoretical prediction of electrons from Drell-Yan mechanism, the
annihilation of quark-antiquark pairs in the opposite colliding protons. The
contribution to the total number of electrons is expected to rival the heavy
flavor contribution at pT ’s on the order of 15-20GeV. In the plot, a prediction
of Armesto, Cacciari, Daineseand, Salgado and Wiedemann[48] is plotted with
the other spectra and, as predicted, the Drell-Yan electrons do not represent
a significant fraction of the measured electrons.
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Figure 7.2: Ratios showing agreement of current measurement to ppg077
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Figure 7.3: Final spectrum with theory curves and systematic errors Run 6
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Figure 7.4: Final spectrum with Drell-Yan and published PHENIX data.

7.3 Heavy Flavor Cross Sections

In this section we compare our data with the First Order Next to Leading
Logarithm (FONLL) calculations of [47, 49]. Their calculation of the charm
and bottom cross sections for pp at

√
s = 200GeV at mid-rapidity are,

σFONLLcc̄ = 256+400
−146µb, (7.1)
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and
σFONLLbb̄ = 1.87+0.99

−0.67µb. (7.2)

In Figs. 7.5-7.7 we compare our data to the differential invariant cross
section predictions for electrons from D and B mesons in pp at 200 GeV, the
contribution of electrons from B → D → e+/− was combined with the the
B → e+/−.

To estimate the cross sections for charm and bottom production we make
the reasonable assumption that the shapes of the FONLL curves are correct.
This then allows us to find scale factors CD and CB that fit the FONLL
calculations to our data;

dσmeasuredD

dy
=
dσFONLLD

dy
∗ CD ± σCD , (7.3a)

so then,
σmeasuredcc̄ = σFONLLcc̄ ∗ CD ± σCD . (7.3b)

Similarly for B mesons,

dσmeasuredB

dy
=
dσFONLLB

dy
∗ CB ± σCB , (7.4a)

⇒ σmeasuredbb̄ = σFONLLbb̄ ∗ CB ± σCB . (7.4b)

We made a series of fits in Figs. 7.5-7.7, the nature of which, explained in
each caption, contemplate these three additional assumptions;

1. That σFONLLcc̄ /σFONLL
bb̄

is correct, so we fit with only one parameter, CDB,
Fig. 7.5 and the first line of Table 7.1.

σmeasuredcc̄ = σFONLLcc̄ ∗ 1.482± 0.109 = 379.4± 27.90µb

σmeasured
bb̄

= σFONLL
bb̄

∗ 1.482± 0.109 = 2.77± 0.20µb

The χ2/ndf is quite good.

2. That CD and CB have to be fine tuned separately, this is the fit of Fig 7.6
and the second line of Table 7.1.

σmeasuredcc̄ = σFONLLcc̄ ∗ 1.925± 0.288 = 492.8± 73.73µb
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σmeasured
bb̄

= σFONLL
bb̄

∗ 0.885± 0.374 = 1.65± 0.70µb

Electrons from bottom are expected to surpass those of charm at 4GeV[47],
in Fig 7.6 the crossing point for electron yield from bottom to sur-
pass charm is at ≈ 8GeV , the bottom cross section is apparently lower
than calculated by FONLL, while the charm cross section is significantly
larger.

3. In preparation to calculating an upper limit for the bottom we fit only
bottom points from 6 GeV to get CB, Fig. 7.7 and the third line of Ta-
ble 7.1.

σmeasured
bb̄

= σFONLL
bb̄

∗ 2.299± 0.489 = 4.30± 0.91µb

The conclusion is that the single electron measurement at high pT con-
strains the cc̄ and bb̄ cross sections but since the spectral shapes are similar
the data does not allow a precise determination of σbb̄.

We now have three bottom and two charm cross sections determined by
our ”scaling method”, there is an additional systematic error that needs to
be assigned to each cross section. This error arises from the two steps of
converting the differential invariant cross section for electrons to that of D(B)
mesons and then converting to charm(bottom) quarks in full phase space.

To understand these systematic errors we use the technique of [24], with a
small modification, to calculate the total charm cross section, this we call our
”integration method”. There are four steps;

1. The integrated cross section dσe/dy(pT > pT low) is calculated from the
differential invariant cross section, Fig. 7.4.

2. The cross section is extrapolated to pT = 0 to get the integrated cross
section dσe/dy at mid rapidity for all pT .

3. This is then converted into a charm cross section at mid rapidity (dσcc̄/dy|y=0)
using a total electron branching ratio of charm (BR(c→ e)),

dσcc̄
dy

=
1

BR(c→ e)

1

Ce/D

dσe

dy
. (7.5)

123



4. Lastly, the cross section is extrapolated to the entire rapidity range to
obtain the total charm production cross section σcc̄.

Since we make the assumption that the FONLL shapes are correct we can
combine steps 1 and 2 and integrate the appropriate FONLL shape over the
entire pT spectrum and apply the correction factors from Table 7.1 to get
dσe/dy. For the fit of Fig 7.5 this gives

dσc→e

dy
= 10.722± 0.789± 1.82µb. (7.6)

All measurements quoted with two errors are of the format value± stat±
sys. The systematic error is the average value of the systematic errors of the
first nine points of the data, the points that will dominate the fit. Moving
these points up and down by these correlated errors will move the value of the
scaling factor from the fit no more than the 17% average value.

The next step is to apply Eq. 7.5 using (BR(c → e)) = 9.5 ± 1.0% and
Ce/D = 0.935 [24],

dσcc̄
dy

=
1

0.095± 0.01

1

0.935
10.722± 0.789± 1.82µb = 120.7± 8.9± 24.0µb.

(7.7)

The systematic error from Eq. 7.6 is added in quadrature with the 1/9.5
relative error of (BR(c→ e))

Lastly a correction factor of 0.225±0.034, which is for the extrapolation to
the entire rapidity range from dσ/dy to σcc̄ plus an additional ”rapidity spread
factor” of 0.96 [24],

σcc̄ =
1

0.225± 0.034

1

0.96
120.7± 8.9± 24.0µb = 558± 41.2± 140µb. (7.8)

The total systematic error is then 25% so we assign this as the systematic
error on the calculation of the total cross sections using the scaling of the
FONLL total cross sections.

In the case of the fit of the B FONLL shape to the data above 6 GeV
we assign a 40% systematic error. This figure is what would be the total
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systematic error on σbb̄ if we could calculate it using the integration method
as we do σcc̄. In this situation the data points from 6 GeV and above have a
systematic error of 36%, once this is propagated through all of the steps one
arrives at the 40% figure.

We wish to quote an upper limit on σbb̄ at the 90% level, the measured
value with the statistical and systematic errors added in quadrature is

σmeasured
bb̄

= 4.30± 1.95µb.

Since the range of this measurement is all physical the upper limit with a
90% confidence level is simply defined as,

σUL
bb̄

= σmeasured
bb̄

+ 1.66σ = 4.30 + 3.23 = 7.53µb

CD CB CDB χ2 χ2/ndf
Fig. 7.5 N/A N/A 1.482 ± 0.109 10.654 0.592
Fig. 7.6 1.925 ± 0.288 0.885 ± 0.374 N/A 7.885 0.438
Fig. 7.7 0.000 fixed 2.299 ± 0.489 N/A 5.247 0.656

Table 7.1: Scale factors from fitting FONLL shapes to data.

σcc̄ σcc̄
integral method scaling method

Fig. 7.5 558.82 ± 41.10 ± 140.06 379.4 ± 27.9 ± 95.1
Fig. 7.6 725.87 ± 108.60 ± 181.92 492.8 ± 73.73 ± 123.5

Table 7.2: Total charm cross sections

σbb̄
scaling method

Fig. 7.5 2.77 ± 0.20 ± 0.69
Fig. 7.6 1.65 ± 0.70 ± 0.41
Fig. 7.7 4.30 ± 0.91 ± 1.72

Table 7.3: Total bottom cross sections

In Tables 7.2 & 7.3 are summarized all of the various total cross section
measurements with all errors. These have been plotted, alongside other mea-
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Figure 7.5: Fit to heavy flavor spectrum with a single parameter with the sum
of the D & B curves from 1.4 GeV and above.
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surements and the FONLL prediction, in Figs. 7.8 and 7.9. The error bars for
the measurements are the statistical and systematic errors added in quadra-
ture. As has been already mentioned, in the case of our scaling method of
determining σbb̄ using only the fit of the FONLL shape for electrons from B
mesons, we have chosen to represent this measurement as an upper limit to
σbb̄. The bar at the right of the line is the upper limit of the quadratic sum of
the statistical and systematic error, the point of the arrow the lower limit to
allow the possibility of the actual value being lower still.

We see in the figures that our measurement is consistent, within errors,
with the other measurements and the FONLL prediction. The error bars are
somewhat correlated for all of the measurement as we all rely on theoretical
and monte carlo (e.g. PYTHIA event generator) predictions of the terms in
going from the differential cross section for electrons to a total cross section
for heavy flavor production. What we have done is to reduce the error bars
in two ways. We have reduced the systematic errors of the overall spectrum.
The systematic error of the cocktail was reduced by the introduction of the
latest hadron data.

Most importantly, our background subtraction technique allowed us to ex-
tend the differential spectrum for electrons well beyond previous measurements
while keeping the systematic error comparable to the cocktail error at lower
pT . This then allowed a tighter constraint on the fit of the FONLL shapes
further reducing the systematic error of the final result.

We made 4 determinations of σcc̄ and 2 of σbb̄ then compared them to
published data and theory in Figs. 7.8 & 7.9. In the case of charm there were
no surprises that we are consistent with the other measurements, the low end
of the pT spectrum dominates and our measurement was not meant to improve
this. Being consistent with previous PHENIX data does mean though that our
measurement is significantly larger than the theoretical FONLL prediction,
essentially twice as large.

The STAR measurement of 2007 is inconsistent with all measurements and
the theory prediction. This has since been corrected as the STAR collaboration
made a careful study of the material in the STAR detector that had not
been accounted for previously. It was discovered that the photonic electron
background from conversions was much higher than previously estimated [50].
The second STAR measurement reflects this change.

The expectation was that our single electron measurement would improve
the determination of the bottom cross section since significant portion of our
measurement contains the pT range that is expected to be dominated by elec-
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Figure 7.6: Fit to heavy flavor spectrum with both D and B from 1.4 GeV
and above.
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Figure 7.7: Fit to heavy flavor spectrum with B only from 6 GeV and above.
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Figure 7.8: Our cross section calculations compared with other measurements
and the FONLL prediction.
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Figure 7.9: Our cross section calculations compared with other measurements
and the FONLL prediction.
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Figure 7.10: The variation of the crossing point of bottom quark dominance.
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trons from bottom quarks. In Fig. 7.10 we see the variation of the crossing
point to bottom dominance, the highest expected crossing point is at 10GeV
so we would appear to have achieved the lever arm that we sought. However
this figure also exposes the issue in the bottom calculation, the range of pos-
sible crossing points is large, from 2.5-10GeV, this is because the two spectral
shapes are so similar.

This is why we proposed the three scenarios in which we varied the con-
straints on the bottom determination. To get an upper limit we fit the bottom
FONLL shape alone to the points from 8GeV and above. In Fig. 7.9 we notice
that our measurement of σbb̄ consistent with theory and STAR, our measure-
ment is at the lower range of previous PHENIX measurements.

In Figs. 7.11 & 7.12 we plot the various measurements of σcc̄ and σbb̄ as
a function of center of mass energy for pp collisions. The 200 GeV points
are our measurements, they are displaced somewhat along the X axis so as
to be clearly visible. These 200 GeV points now give some restriction to the
theoretical predictions, the range of the X axis is to the TeV range where the
LHC experiments are working hard to add measurements
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Figure 7.11: Our cross section calculations compared with other measurements
and the FONLL prediction. The red and blue points are our measurements,
Table 7.2. The red points are from the scaling method and the blue points
are the integral method. All points are displaced slightly along the abscissa
to make them visible, all measurements are at

√
s = 200GeV .
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Figure 7.12: Our cross section calculations compared with other measurements
and the FONLL prediction.The black arrow is the upper limit measurement
and the red points are the other two measurements from Table 7.3. The
red points are displaced slightly along the abscissa to make them visible, all
measurements are at

√
s = 200GeV .
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Chapter 8

Summary and Outlook

In this thesis we have presented a measurement of high pT single electrons
in pp collisions at center of mass energy of 200 GeV from heavy flavor quarks.
We have significantly extended the spectrum over previously published data,
from 8.5 GeV to 14.5 GeV. We did this by overcoming the issue of hadron
contamination in the pT ’s above 6GeV, it is at this value that the principal
electron identification sub system of PHENIX, the RICH, can no longer reject
hadrons.

This was done by exploiting the energy deposition characteristics of both
hadrons, principally π’s, and electrons in the electromagnetic calorimeters.
The backgrounds inherent in this measurement at the PHENIX detector were
modeled in detail to investigate the effect of each background (or lack thereof)
on our measurement.

Our measurement of the heavy flavor single electron spectrum provides the
pp reference that is used to compare the various collision environments as we
explore the existence and properties of the Quark Gluon Plasma. However
the calculation of the total cross section for charm and bottom production
at this energy is also of critical importance. Heavy flavor production should
provide a precise measurement of the parton distribution in the nucleon as well
as nuclear shadowing effects [51]. The experiments at RHIC provide the first
measurements of heavy flavor, charm and bottom, production cross section in
pp collisions at 200 GeV. This allows to constrain theoretical predictions for
this energy region which have significant uncertainties.[52]

We made four determinations of σcc̄ and 2 of σbb̄ and compared them to
published data and theory. The expectation was that our single electron mea-
surement would improve the determination of the bottom cross section since a
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significant portion of our measurement contains the pT range that is expected
to be dominated by electrons from bottom quarks, however this turned out
not to be conclusive as the two spectral shapes are so similar.

At the present time, PHENIX has no ability to distinguish electrons from
charm and bottom, additional information is needed. In the future this will be
provided by a new detector system. As a major upgrade to PHENIX a silicon
vertex detector was installed in Run 10 (2010) and has begun to take data. The
silicon vertex tracker will allow PHENIX to distinguish tracks from charm and
bottom in AuAu collisions.[53] The inner two of four layers have four million
channels and will have an occupancy rate of < 2% in a central AuAu collision.
The spatial resolution of these inner layers is of the order of 50µm so the
vertex detector will easily be able to separate B mesons (cτ = 464µm) from
D mesons (cτ = 125µm).
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R6 n1 ≥ 5 MB raw MB raw ERT raw ERT raw
pT range 0.6 ≤ E/p < 0.8 0.8 ≤ E/p < 1.2 0.6 ≤ E/p < 0.8 0.8 ≤ E/p < 1.2
1.2-1.4 191 ± 13.82 1130 ± 33.62 6418 ± 80.11 135996 ± 368.78
1.4-1.6 80 ± 8.94 593 ± 24.35 5885 ± 76.71 125186 ± 353.82
1.6-1.8 39 ± 6.25 322 ± 17.94 5287 ± 72.71 97236 ± 311.83
1.8-2.0 21 ± 4.58 188 ± 13.71 4464 ± 66.81 68542 ± 261.81
2.0-2.5 32 ± 5.66 196 ± 14.00 7254 ± 85.17 85127 ± 291.77
2.5-3.0 8 ± 2.83 71 ± 8.43 3166 ± 56.27 29818 ± 172.68
3.0-3.5 5 ± 2.24 22 ± 4.69 1341 ± 36.62 11300 ± 106.30
3.5-4.0 0 ± 0.00 7 ± 2.65 541 ± 23.26 4686 ± 68.45
4.0-4.5 1 ± 1.00 5 ± 2.24 276 ± 16.61 2159 ± 46.47
4.5-5.0 1 ± 1.00 2 ± 1.41 151 ± 12.29 1061 ± 32.57
5.0-6.0 0 ± 0.00 3 ± 1.73 123 ± 11.09 855 ± 29.24
6.0-7.0 0 ± 0.00 0 ± 0.00 93 ± 9.64 329 ± 18.14
7.0-8.0 0 ± 0.00 0 ± 0.00 83 ± 9.11 165 ± 12.85
8.0-9.0 0 ± 0.00 1 ± 1.00 72 ± 8.49 81 ± 9.00
9.0-10.0 0 ± 0.00 2 ± 1.41 52 ± 7.21 42 ± 6.48
10.0-11.0 0 ± 0.00 0 ± 0.00 24 ± 4.90 28 ± 5.29
11.0-12.0 0 ± 0.00 0 ± 0.00 23 ± 4.80 15 ± 3.87
12.0-13.0 0 ± 0.00 0 ± 0.00 8 ± 2.83 8 ± 2.83
13.0-14.0 0 ± 0.00 0 ± 0.00 3 ± 1.73 4 ± 2.00
14.0-15.0 0 ± 0.00 0 ± 0.00 7 ± 2.65 6 ± 2.45

Table A.1: raw numbers Run6 n1 ≥ 5

pT Data Yield Yield Cocktail Heavy Flavor
range Raw Counts Fraction Electrons Scaled Raw Counts
1.2-1.4 1130.00 ± 33.62 0.999995 ± 0 1129.99 ± 33.62 811.57 ± 0.00 318.43 ± 9.47
1.4-1.6 593.00 ± 24.35 0.999992 ± 0 593.00 ± 24.35 405.76 ± 0.00 187.24 ± 7.69
1.6-1.8 322.00 ± 17.94 0.999976 ± 0 321.99 ± 17.94 212.62 ± 0.00 109.38 ± 6.10
1.8-2.0 188.00 ± 13.71 0.999933 ± 0 187.99 ± 13.71 117.57 ± 0.00 70.42 ± 5.14
2.0-2.5 196.00 ± 14.00 0.999842 ± 0 195.97 ± 14.00 124.84 ± 0.00 71.13 ± 5.08
2.5-3.0 29818.00 ± 172.68 0.999387 ± 0 29799.72 ± 172.57 16415.30 ± 0.00 13384.42 ± 77.51
3.0-3.5 11300.00 ± 106.30 0.99796 ± 0 11276.95 ± 106.08 5822.16 ± 0.00 5454.79 ± 51.31
3.5-4.0 4686.00 ± 68.45 0.995033 ± 0 4662.72 ± 68.11 2325.03 ± 0.00 2337.69 ± 34.15
4.0-4.5 2159.00 ± 46.47 0.985472 ± 0 2127.63 ± 45.79 1031.68 ± 0.00 1095.95 ± 23.59
4.5-5.0 1061.00 ± 32.57 0.959388 ± 0 1017.91 ± 31.25 495.56 ± 0.00 522.35 ± 16.04
5.0-6.0 855.00 ± 29.24 0.917993 ± 0 784.88 ± 26.84 401.56 ± 0.00 383.32 ± 13.11
6.0-7.0 329.00 ± 18.14 0.853633 ± 0 280.85 ± 15.48 130.11 ± 0.00 150.74 ± 8.31
7.0-8.0 165.00 ± 12.85 0.682127 ± 0 112.55 ± 8.76 50.10 ± 0.00 62.46 ± 4.86
8.0-9.0 81.00 ± 9.00 0.545 ± 0 44.15 ± 4.91 21.86 ± 0.00 22.28 ± 2.48
9.0-10.0 42.00 ± 6.48 0.456371 ± 0 19.17 ± 2.96 10.53 ± 0.00 8.63 ± 1.33
10.0-11.0 28.00 ± 5.29 0.407669 ± 0 11.41 ± 2.16 5.48 ± 0.00 5.93 ± 1.12
11.0-12.0 15.00 ± 3.87 0.368369 ± 0 5.53 ± 1.43 3.02 ± 0.00 2.51 ± 0.65
12.0-13.0 8.00 ± 2.83 0.357233 ± 0 2.86 ± 1.01 1.74 ± 0.00 1.12 ± 0.40
13.0-14.0 4.00 ± 2.00 0.305654 ± 0 1.22 ± 0.61 1.03 ± 0.00 0.19 ± 0.09
14.0-15.0 6.00 ± 2.45 0.227798 ± 0 1.37 ± 0.56 0.63 ± 0.00 0.73 ± 0.30

Table A.2: Heavy flavor raw yield, yield fraction.
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pT Data Cocktail π′s Heavy Flavor
range Raw Counts Scaled Scaled Fit Raw Counts
1.2-1.4 1130 ± 33.62 811.57 ± 0 0.00 ± 0.00 318.44 ± 9.47
1.4-1.6 593 ± 24.35 405.76 ± 0 0.00 ± 0.00 187.25 ± 7.69
1.6-1.8 322 ± 17.94 212.62 ± 0 0.00 ± 0.00 109.39 ± 6.10
1.8-2.0 188 ± 13.71 117.57 ± 0 0.00 ± 0.00 70.43 ± 5.14
2.0-2.5 196 ± 14.00 124.84 ± 0 0.00 ± 0.00 71.16 ± 5.08
2.5-3.0 29818 ± 172.68 16415.30 ± 0 0.00 ± 0.00 13402.70 ± 77.62
3.0-3.5 11300 ± 106.30 5822.16 ± 0 0.00 ± 0.00 5477.84 ± 51.53
3.5-4.0 4686 ± 68.45 2325.03 ± 0 0.00 ± 0.00 2360.97 ± 34.49
4.0-4.5 2159 ± 46.47 1031.68 ± 0 27.57 ± 5.25 1099.75 ± 23.67
4.5-5.0 1061 ± 32.57 495.56 ± 0 18.72 ± 4.33 546.72 ± 16.78
5.0-6.0 855 ± 29.24 401.56 ± 0 17.96 ± 4.24 435.48 ± 14.89
6.0-7.0 329 ± 18.14 130.11 ± 0 40.36 ± 6.35 158.54 ± 8.74
7.0-8.0 165 ± 12.85 50.10 ± 0 30.22 ± 5.50 84.68 ± 6.59
8.0-9.0 81 ± 9.00 21.86 ± 0 29.36 ± 5.42 29.78 ± 3.31
9.0-10.0 42 ± 6.48 10.53 ± 0 22.66 ± 4.76 8.80 ± 1.36
10.0-11.0 28 ± 5.29 5.48 ± 0 12.56 ± 3.54 9.96 ± 1.88
11.0-12.0 15 ± 3.87 3.02 ± 0 5.59 ± 2.36 6.39 ± 1.65
12.0-13.0 8 ± 2.83 1.74 ± 0 3.75 ± 1.94 2.52 ± 0.89
13.0-14.0 4 ± 2.00 1.03 ± 0 2.22 ± 1.49 0.74 ± 0.37
14.0-15.0 6 ± 2.45 0.63 ± 0 1.74 ± 1.32 3.62 ± 1.48

Table A.3: Heavy flavor raw yield, π′s from fit.

pT Data Cocktail π′s Heavy Flavor
range Raw Counts Scaled Abs Norm Raw Counts
1.2-1.4 1130 ± 33.62 811.57 ± 0 0.00 ± 0.00 318.44 ± 9.47
1.4-1.6 593 ± 24.35 405.76 ± 0 0.00 ± 0.00 187.25 ± 7.69
1.6-1.8 322 ± 17.94 212.62 ± 0 0.00 ± 0.00 109.39 ± 6.10
1.8-2.0 188 ± 13.71 117.57 ± 0 0.00 ± 0.00 70.43 ± 5.14
2.0-2.5 196 ± 14.00 124.84 ± 0 0.00 ± 0.00 71.16 ± 5.08
2.5-3.0 29818 ± 172.68 16415.30 ± 0 0.00 ± 0.00 13402.70 ± 77.62
3.0-3.5 11300 ± 106.30 5822.16 ± 0 0.00 ± 0.00 5477.84 ± 51.53
3.5-4.0 4686 ± 68.45 2325.03 ± 0 0.00 ± 0.00 2360.97 ± 34.49
4.0-4.5 2159 ± 46.47 1031.68 ± 0 0.06 ± 0.04 1127.26 ± 24.26
4.5-5.0 1061 ± 32.57 495.56 ± 0 6.33 ± 0.82 559.11 ± 17.16
5.0-6.0 855 ± 29.24 401.56 ± 0 60.35 ± 2.37 393.09 ± 13.44
6.0-7.0 329 ± 18.14 130.11 ± 0 105.18 ± 3.39 93.71 ± 5.17
7.0-8.0 165 ± 12.85 50.10 ± 0 75.82 ± 2.50 39.08 ± 3.04
8.0-9.0 81 ± 9.00 21.86 ± 0 45.65 ± 1.52 13.49 ± 1.50
9.0-10.0 42 ± 6.48 10.53 ± 0 24.23 ± 0.81 7.23 ± 1.12
10.0-11.0 28 ± 5.29 5.48 ± 0 15.71 ± 0.51 6.81 ± 1.29
11.0-12.0 15 ± 3.87 3.02 ± 0 8.22 ± 0.28 3.76 ± 0.97
12.0-13.0 8 ± 2.83 1.74 ± 0 4.54 ± 0.16 1.73 ± 0.61
13.0-14.0 4 ± 2.00 1.03 ± 0 2.79 ± 0.09 0.18 ± 0.09
14.0-15.0 6 ± 2.45 0.63 ± 0 1.52 ± 0.06 3.84 ± 1.57

Table A.4: Heavy flavor raw yield, π′s from absolute normalization.
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pT Data Cocktail π’s Heavy Flavor
range Raw Counts Absolute Norm Rπ ∗ lo window Raw Counts
1.2-1.4 1130 ± 33.62 811.57 ± 0 0.00 ± 0.00 318.44 ± 17.84
1.4-1.6 593 ± 24.35 405.76 ± 0 0.00 ± 0.00 187.25 ± 13.68
1.6-1.8 322 ± 17.94 212.62 ± 0 0.00 ± 0.00 109.39 ± 10.46
1.8-2.0 188 ± 13.71 117.57 ± 0 0.00 ± 0.00 70.43 ± 8.39
2.0-2.5 196 ± 14.00 124.84 ± 0 0.00 ± 0.00 71.16 ± 8.44
2.5-3.0 29818 ± 172.68 16415.30 ± 0 0.00 ± 0.00 13402.70 ± 115.77
3.0-3.5 11300 ± 106.30 5822.16 ± 0 0.00 ± 0.00 5477.84 ± 74.01
3.5-4.0 4686 ± 68.45 2325.03 ± 0 0.00 ± 0.00 2360.97 ± 48.59
4.0-4.5 2159 ± 46.47 1031.68 ± 0 0.00 ± 0.00 1127.32 ± 33.58
4.5-5.0 1061 ± 32.57 495.56 ± 0 123.01 ± 3.78 442.43 ± 21.03
5.0-6.0 855 ± 29.24 401.56 ± 0 93.50 ± 3.20 359.94 ± 18.97
6.0-7.0 329 ± 18.14 130.11 ± 0 64.49 ± 3.56 134.40 ± 11.59
7.0-8.0 165 ± 12.85 50.10 ± 0 52.58 ± 4.09 62.33 ± 7.89
8.0-9.0 81 ± 9.00 21.86 ± 0 41.78 ± 4.64 17.36 ± 4.17
9.0-10.0 42 ± 6.48 10.53 ± 0 27.76 ± 4.28 3.70 ± 1.92
10.0-11.0 28 ± 5.29 5.48 ± 0 11.86 ± 2.24 10.66 ± 3.26
11.0-12.0 15 ± 3.87 3.02 ± 0 10.61 ± 2.74 1.37 ± 1.17
12.0-13.0 8 ± 2.83 1.74 ± 0 3.48 ± 1.23 2.78 ± 1.67
13.0-14.0 4 ± 2.00 1.03 ± 0 1.25 ± 0.62 1.72 ± 1.31
14.0-15.0 6 ± 2.45 0.63 ± 0 2.82 ± 1.15 2.54 ± 1.59

Table A.5: Raw Non-Photonic π′s subtracted using Rπ Run6 n1 ≥ 5
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pT range (GeV) Inv. Cross Sect. stat. error sys. error
1.2-1.4 1.429E-04 1.535E-06 2.872E-05
1.4-1.6 7.271E-05 6.759E-07 1.276E-05
1.6-1.8 3.623E-05 3.170E-07 6.003E-06
1.8-2.0 1.988E-05 1.619E-07 3.117E-06
2.0-2.5 7.256E-06 3.641E-08 1.493E-06
2.5-3.0 2.183E-06 8.935E-09 3.843E-07
3.0-3.5 7.459E-07 2.593E-09 1.185E-07
3.5-4.0 2.798E-07 8.602E-10 4.163E-08
4.0-4.5 1.051E-07 5.044E-10 1.690E-08
4.5-5.0 4.273E-08 4.765E-10 7.428E-09
5.0-6.0 1.486E-08 1.856E-10 3.620E-09
6.0-7.0 4.741E-09 1.478E-10 1.169E-09
7.0-8.0 1.925E-09 1.290E-10 5.656E-10
8.0-9.0 5.278E-10 1.103E-10 3.111E-10
9.0-10.0 1.112E-10 8.742E-11 1.771E-10

10.0-11.00 2.504E-10 5.526E-11 8.052E-11
11.00-12.00 4.666E-11 4.958E-11 5.596E-11
12.00-13.00 5.933E-11 2.829E-11 2.022E-11
13.00-14.00 3.575E-11 1.659E-11 8.014E-12
14.00-15.00 4.864E-11 2.463E-11 1.507E-11

Table A.7: Differential invariant cross section of electrons ((Ne+ + Ne−)/2)
from heavy-flavor decays for 200 GeV p + p collisions at mid-rapidity. The
cross section and corresponding errors are in units of millibarns. This table is
in reference to Fig. 7.3
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pT range (GeV) Inv. Cross Sect. sys. error cocktail sys. error Rpi sys. error ”combined”
1.2-1.4 1.429E-04 2.491E-05 0.000E+00 1.429E-05
1.4-1.6 7.271E-05 1.049E-05 0.000E+00 7.271E-06
1.6-1.8 3.623E-05 4.786E-06 0.000E+00 3.623E-06
1.8-2.0 1.988E-05 2.401E-06 0.000E+00 1.988E-06
2.0-2.5 7.256E-06 1.305E-06 0.000E+00 7.256E-07
2.5-3.0 2.183E-06 3.163E-07 0.000E+00 2.183E-07
3.0-3.5 7.459E-07 9.202E-08 0.000E+00 7.459E-08
3.5-4.0 2.798E-07 3.082E-08 0.000E+00 2.798E-08
4.0-4.5 1.051E-07 1.141E-08 6.718E-09 1.051E-08
4.5-5.0 4.273E-08 4.696E-09 3.856E-09 4.273E-09
5.0-6.0 1.486E-08 2.512E-09 2.142E-09 1.486E-09
6.0-7.0 4.741E-09 6.631E-10 8.382E-10 4.741E-10
7.0-8.0 1.925E-09 2.203E-10 4.840E-10 1.925E-10
8.0-9.0 5.278E-10 7.155E-11 2.982E-10 5.278E-11
9.0-10.0 1.112E-10 2.665E-11 1.747E-10 1.112E-11
10.0-11.00 2.504E-10 1.790E-11 7.441E-11 2.504E-11
11.00-12.00 4.666E-11 6.963E-12 5.533E-11 4.666E-12
12.00-13.00 5.933E-11 4.421E-12 1.881E-11 5.933E-12
13.00-14.00 3.575E-11 2.502E-12 6.722E-12 3.575E-12
14.00-15.00 4.864E-11 1.851E-12 1.414E-11 4.864E-12

Table A.8: Individual Systematic Errors
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Appendix B

Supplementary Figures

B.1 eID Selection Cut Profiles

B.1.1 EMC Matching

Figure B.1: EMC matching cut profiles.

150



Figure B.2: EMC matching cut profiles.
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Figure B.3: EMC matching cut profiles.
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B.1.2 Shower Shape

Figure B.4: Shower shape cut profiles.
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Figure B.5: Shower shape cut profiles.
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Figure B.6: Shower shape cut profiles.

155



B.1.3 RICH Variable

Figure B.7: RICH cut profiles.
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Figure B.8: RICH cut profiles.
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Figure B.9: RICH cut profiles.
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B.2 Fits to electron E/p profiles
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B.3 Fits to γ conversion electron E/p profiles
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B.4 Fits to π E/p profiles
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B.5 Fits to Ke3 E/p profiles
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B.6 Fits to data E/p profiles
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